The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] DF(310hit)

21-40hit(310hit)

  • Delay Distribution Based Remote Data Fetch Scheme for Hadoop Clusters in Public Cloud

    Ravindra Sandaruwan RANAWEERA  Eiji OKI  Nattapong KITSUWAN  

     
    PAPER-Network

      Pubricized:
    2019/02/04
      Vol:
    E102-B No:8
      Page(s):
    1617-1625

    Apache Hadoop and its ecosystem have become the de facto platform for processing large-scale data, or Big Data, because it hides the complexity of distributed computing, scheduling, and communication while providing fault-tolerance. Cloud-based environments are becoming a popular platform for hosting Hadoop clusters due to their low initial cost and limitless capacity. However, cloud-based Hadoop clusters bring their own challenges due to contradictory design principles. Hadoop is designed on the shared-nothing principle while cloud is based on the concepts of consolidation and resource sharing. Most of Hadoop's features are designed for on-premises data centers where the cluster topology is known. Hadoop depends on the rack assignment of servers (configured by the cluster administrator) to calculate the distance between servers. Hadoop calculates the distance between servers to find the best remote server from which to fetch data from when fetching non-local data. However, public cloud environment providers do not share rack information of virtual servers with their tenants. Lack of rack information of servers may allow Hadoop to fetch data from a remote server that is on the other side of the data center. To overcome this problem, we propose a delay distribution based scheme to find the closest server to fetch non-local data for public cloud-based Hadoop clusters. The proposed scheme bases server selection on the delay distributions between server pairs. Delay distribution is calculated measuring the round-trip time between servers periodically. Our experiments observe that the proposed scheme outperforms conventional Hadoop nearly by 12% in terms of non-local data fetch time. This reduction in data fetch time will lead to a reduction in job run time, especially in real-world multi-user clusters where non-local data fetching can happen frequently.

  • A 0.3-to-5.5 GHz Digital Frequency Discriminator IC with Time to Digital Converter and Edge Counter for Instantaneous Frequency Measurement

    Akihito HIRAI  Koji TSUTSUMI  Hideyuki NAKAMIZO  Eiji TANIGUCHI  Kenichi TAJIMA  Kazutomi MORI  Masaomi TSURU  Mitsuhiro SHIMOZAWA  

     
    PAPER

      Vol:
    E102-C No:7
      Page(s):
    547-557

    In this paper, a high-frequency resolution Digital Frequency Discriminator (DFD) IC using a Time to Digital Converter (TDC) and an edge counter for Instantaneous Frequency Measurement (IFM) is proposed. In the proposed DFD, the TDC measures the time of the maximum periods of divided RF short pulse signals, and the edge counter counts the maximum number of periods of the signal. By measuring the multiple periods with the TDC and the edge counter, the proposed DFD improves the frequency resolution compared with that of the measuring one period because it is proportional to reciprocal of the measurement time of TDC. The DFD was fabricated using 0.18-um SiGe-BiCMOS. Frequency accuracy below 0.39MHz and frequency precision below 1.58 MHz-RMS were achieved during 50 ns detection time in 0.3 GHz to 5.5 GHz band with the temperature range from -40 to 85 degrees.

  • On BER Analysis and Comparison for OSTBC MIMO DF Relaying Networks

    Dong-Sun JANG  Ui-Seok JEONG  Gi-Hoon RYU  Kyunbyoung KO  

     
    PAPER-Mobile Information Network and Personal Communications

      Vol:
    E102-A No:6
      Page(s):
    825-833

    In this paper, we show exact bit error rates (BERs) for orthogonal space-time block code (OSTBC) decoded-and-forward (DF) relaying networks over independent and non-identically distributed (INID) Rayleigh fading channels. We consider both non-adaptive DF (non-ADF) and adaptive DF (ADF) schemes for OSTBC relay networks with arbitrary multiple-input multiple-output (MIMO) relay antenna configurations. For each scheme, we derive the probability density functions (PDFs) of indirect link and combined links, respectively. Based on the derived PDFs, we express exact BERs and then, their accuracy is verified by the comparison with simulation results. It is confirmed that the transmit diversity gain of the relay node can be obtained when the relay is close to the source and then, the receive diversity gain of the relay node as well as ADF gain over non-ADF can be obtained when the relay is close to the destination.

  • High-Frequency and Integrated Design Based on Flip-Chip Interconnection Technique (Hi-FIT) for High-Speed (>100 Gbaud) Optical Devices Open Access

    Shigeru KANAZAWA  Hiroshi YAMAZAKI  Yuta UEDA  Wataru KOBAYASHI  Yoshihiro OGISO  Johsuke OZAKI  Takahiko SHINDO  Satoshi TSUNASHIMA  Hiromasa TANOBE  Atsushi ARARATAKE  

     
    INVITED PAPER

      Vol:
    E102-C No:4
      Page(s):
    340-346

    We developed a high-frequency and integrated design based on a flip-chip interconnection technique (Hi-FIT) as a wire-free interconnection technique that provides a high modulation bandwidth. The Hi-FIT can be applied to various high-speed (>100 Gbaud) optical devices. The Hi-FIT EA-DFB laser module has a 3-dB bandwidth of 59 GHz. And with a 4-intensity-level pulse amplitude modulation (PAM) operation at 107 Gbaud, we obtained a bit-error rate (BER) of less than 3.8×10-3, which is an error-free condition, by using a 7%-overhead (OH) hard-decision forward error correction (HD-FEC) code, even after a 10-km SMF transmission. The 3-dB bandwidth of the Hi-FIT employing an InP-MZM sub-assembly was more than 67 GHz, which was the limit of our measuring instrument. We also demonstrated a 120-Gbaud rate IQ modulation.

  • A PCB-Integratable Metal Cap Slot Antenna for 60-GHz Band Mobile Terminals Open Access

    Takashi TOMURA  Haruhisa HIRAYAMA  Jiro HIROKAWA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2018/08/13
      Vol:
    E102-B No:2
      Page(s):
    317-323

    A PCB-integratable metal cap slot antenna is developed for the 60-GHz band. The antenna is composed of two slots and a T-junction and is fed by a post-wall waveguide on a substrate. The dimensions of the designed antenna are 8.0×4.5×2.5mm3. The designed antenna is insensitive with a metal block behind the antenna. The designed antenna is fabricated by machining a brass block and evaluated by measurement. The measurement shows reflection less than -10.0dB, gain larger than 7.8dBi and beamwidth between 54°-65° over the 60-GHz band with endfire radiation. The antenna showed high gain together with short length of half wavelength in the radiation direction. This antenna also can be integrated with printed circuit board (PCB) and is suitable for mobile terminals such as smart phones and tablets.

  • Fabrication of the Flexible Dual-Gate OFET Based Organic Pressure Sensor

    Tatsuya ISHIKAWA  Heisuke SAKAI  Hideyuki MURATA  

     
    BRIEF PAPER

      Vol:
    E102-C No:2
      Page(s):
    188-191

    We have developed the flexible dual-gate OFET based pressure sensor using a thin polyethylene naphthalate (PEN, 25 µm) film as a substrate. The performance was equivalent to that fabricated on the glass substrate, and it could also be used on the curved surface. Drain current in the flexible pressure sensor was increased according to the pressure load without application of gate voltage. The magnitude of the change in drain current with respect to pressure application was about 2.5 times larger than that for the device on the glass substrate.

  • Avoiding Performance Impacts by Re-Replication Workload Shifting in HDFS Based Cloud Storage

    Thanda SHWE  Masayoshi ARITSUGI  

     
    PAPER-Cloud Computing

      Pubricized:
    2018/09/18
      Vol:
    E101-D No:12
      Page(s):
    2958-2967

    Data replication in cloud storage systems brings a lot of benefits, such as fault tolerance, data availability, data locality and load balancing both from reliability and performance perspectives. However, each time a datanode fails, data blocks stored on the failed datanode must be restored to maintain replication level. This may be a large burden for the system in which resources are highly utilized with users' application workloads. Although there have been many proposals for replication, the approach of re-replication has not been properly addressed yet. In this paper, we present a deferred re-replication algorithm to dynamically shift the re-replication workload based on current resource utilization status of the system. As workload pattern varies depending on the time of the day, simulation results from synthetic workload demonstrate a large opportunity for minimizing impacts on users' application workloads with the simple algorithm that adjusts re-replication based on current resource utilization. Our approach can reduce performance impacts on users' application workloads while ensuring the same reliability level as default HDFS can provide.

  • A Low-Complexity and Fast Convergence Message Passing Receiver Based on Partial Codeword Transmission for SCMA Systems

    Xuewan ZHANG  Wenping GE  Xiong WU  Wenli DAI  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Pubricized:
    2018/05/16
      Vol:
    E101-B No:11
      Page(s):
    2259-2266

    Sparse code multiple access (SCMA) based on the message passing algorithm (MPA) for multiuser detection is a competitive non-orthogonal multiple access technique for fifth-generation wireless communication networks Among the existing multiuser detection schemes for uplink (UP) SCMA systems, the serial MPA (S-MPA) scheme, where messages are updated sequentially, generally converges faster than the conventional MPA (C-MPA) scheme, where all messages are updated in a parallel manner. In this paper, the optimization of message scheduling in the S-MPA scheme is proposed. Firstly, some statistical results for the probability density function (PDF) of the received signal are obtained at various signal-to-noise ratios (SNR) by using the Monte Carlo method. Then, based on the non-orthogonal property of SCMA, the data mapping relationship between resource nodes and user nodes is comprehensively analyzed. A partial codeword transmission of S-MPA (PCTS-MPA) with threshold decision scheme of PDF is proposed and verified. Simulations show that the proposed PCTS-MPA not only reduces the complexity of MPA without changing the bit error ratio (BER), but also has a faster convergence than S-MPA, especially at high SNR values.

  • Incorporating Zero-Laxity Policy into Mixed-Criticality Multiprocessor Real-Time Systems

    Namyong JUNG  Hyeongboo BAEK  Donghyouk LIM  Jinkyu LEE  

     
    PAPER-Systems and Control

      Vol:
    E101-A No:11
      Page(s):
    1888-1899

    As real-time embedded systems are required to accommodate various tasks with different levels of criticality, scheduling algorithms for MC (Mixed-Criticality) systems have been widely studied in the real-time systems community. Most studies have focused on MC uniprocessor systems whereas there have been only a few studies to support MC multiprocessor systems. In particular, although the ZL (Zero-Laxity) policy has been known to an effective technique in improving the schedulability performance of base scheduling algorithms on SC (Single-Criticality) multiprocessor systems, the effectiveness of the ZL policy on MC multiprocessor systems has not been revealed to date. In this paper, we focus on realizing the potential of the ZL policy for MC multiprocessor systems, which is the first attempt. To this end, we design the ZL policy for MC multiprocessor systems, and apply the policy to EDF (Earliest Deadline First), yielding EDZL (Earliest Deadline first until Zero-Laxity) tailored for MC multiprocessor systems. Then, we develop a schedulability analysis for EDZL (as well as its base algorithm EDF) to support its timing guarantee. Our simulation results show a significant schedulability improvement of EDZL over EDF, demonstrating the effectiveness of the ZL policy for MC multiprocessor systems.

  • A 7GS/s Complete-DDFS-Solution in 65nm CMOS

    Abdel MARTINEZ ALONSO  Masaya MIYAHARA  Akira MATSUZAWA  

     
    PAPER

      Vol:
    E101-C No:4
      Page(s):
    206-217

    A 7GS/s complete-DDFS-solution featuring a two-times interleaved RDAC with 1.2Vpp-diff output swing was fabricated in 65nm CMOS. The frequency tuning and amplitude resolutions are 24-bits and 10-bits respectively. The RDAC includes a mixed-signal, high-speed architecture for random swapping thermometer coding dynamic element matching that improves the narrowband SFDR up to 8dB for output frequencies below 1.85GHz. The proposed techniques enable a 7 GS/s operation with a spurious-free dynamic range better than 32dBc over the full Nyquist bandwidth. The worst case narrowband SFDR is 42dBc. This system consumes 87.9mW/(GS/s) from a 1.2V power supply when the RSTC-DEM method is enabled, resulting in a FoM of 458.9GS/s·2(SFDR/6)/W. A proof-of-concept chip with an active area of only 0.22mm2 was measured in prototypes encapsulated in a 144-pins low profile quad flat package.

  • A Semidefinite Programming Approach for Doppler Frequency Shift Based Stationary Target Localization

    Li Juan DENG  Ping WEI  Yan Shen DU  Hua Guo ZHANG  

     
    LETTER-Digital Signal Processing

      Vol:
    E101-A No:2
      Page(s):
    507-511

    In this work, we address the stationary target localization problem by using Doppler frequency shift (DFS) measurements. Based on the measurement model, the maximum likelihood estimation (MLE) of the target position is reformulated as a constrained weighted least squares (CWLS) problem. However, due to its non-convex nature, it is difficult to solve the problem directly. Thus, in order to yield a semidefinite programming (SDP) problem, we perform a semidefinite relaxation (SDR) technique to relax the CWLS problem. Although the SDP is a relaxation of the original MLE, it can facilitate an accurate estimate without post processing. Simulations are provided to confirm the promising performance of the proposed method.

  • Statistical Property Guided Feature Extraction for Volume Data

    Li WANG  Xiaoan TANG  Junda ZHANG  Dongdong GUAN  

     
    LETTER-Pattern Recognition

      Pubricized:
    2017/10/13
      Vol:
    E101-D No:1
      Page(s):
    261-264

    Feature visualization is of great significances in volume visualization, and feature extraction has been becoming extremely popular in feature visualization. While precise definition of features is usually absent which makes the extraction difficult. This paper employs probability density function (PDF) as statistical property, and proposes a statistical property guided approach to extract features for volume data. Basing on feature matching, it combines simple liner iterative cluster (SLIC) with Gaussian mixture model (GMM), and could do extraction without accurate feature definition. Further, GMM is paired with a normality test to reduce time cost and storage requirement. We demonstrate its applicability and superiority by successfully applying it on homogeneous and non-homogeneous features.

  • Digital Frequency Discriminator (DFD) Improvement by LO Leakage and I/Q Imbalance Compensation

    Won CHOI  Kyung Heon KOO  

     
    PAPER-Navigation, Guidance and Control Systems

      Pubricized:
    2017/05/26
      Vol:
    E100-B No:12
      Page(s):
    2164-2171

    This study presents the design of a phase correlator for a digital frequency discriminator (DFD) that operates in the 2.0-6.0GHz frequency range. The accuracy of frequency discrimination as determined by the isolation of the correlator mixer was analyzed, and LO-RF isolation was found to have a significant effect on the frequency discrimination error by deriving various analytic equations related to the LO-RF isolation and phase performance. We propose a novel technique (phase sector compensation) to improve the accuracy of frequency discrimination. The phase sector compensation technique improved phase error by canceling the DC offset of the I and Q signals for only the frequency bands where the mixer's LO-RF isolation was below a specified limit. In the 2.0-6.0GHz range, the phase error of the designed phase correlator was decreased from 4.57° to 4.23° (RMS), and the frequency accuracy was improved from 1.02MHz to 0.95MHz (RMS). In the 4.8-6.0GHz range, the RMS phase error was improved from 5.59° to 4.12°, the frequency accuracy was improved from 1.24MHz to 0.92MHz, and the performance of the DFD correlator was improved by 26.3% in the frequency sector where LO-RF isolation was poor. Overall, the DFD correlator performance was improved by LO leakage compensation.

  • Advantages of SOA Assisted Extended Reach EADFB Laser (AXEL) for Operation at Low Power and with Extended Transmission Reach Open Access

    Wataru KOBAYASHI  Naoki FUJIWARA  Takahiko SHINDO  Yoshitaka OHISO  Shigeru KANAZAWA  Hiroyuki ISHII  Koichi HASEBE  Hideaki MATSUZAKI  Mikitaka ITOH  

     
    INVITED PAPER

      Vol:
    E100-C No:10
      Page(s):
    759-766

    We propose a novel structure that can reduce the power consumption and extend the transmission distance of an electro-absorption modulator integrated with a DFB (EADFB) laser. To overcome the trade-off relationship of the optical loss and chirp parameter of the EA modulator, we integrate a semiconductor optical amplifier (SOA) with an EADFB laser. With the proposed SOA assisted extended reach EADFB laser (AXEL) structure, the LD and SOA sections are operated by an electrically connected input port. We describe a design for AXEL that optimizes the LD and SOA length ratio when their total operation current is 80mA. By using the designed AXEL, the power consumption of a 10-Gbit/s, 1.55-µm EADFB laser is reduced by 1/2 and at the same time the transmission distance is extended from 80 to 100km.

  • Spectral Distribution of Wigner Matrices in Finite Dimensions and Its Application to LPI Performance Evaluation of Radar Waveforms

    Jun CHEN  Fei WANG  Jianjiang ZHOU  Chenguang SHI  

     
    LETTER-Digital Signal Processing

      Vol:
    E100-A No:9
      Page(s):
    2021-2025

    Recent research on the assessment of low probability of interception (LPI) radar waveforms is mainly based on limiting spectral properties of Wigner matrices. As the dimension of actual operating data is constrained by the sampling frequency, it is very urgent and necessary to research the finite theory of Wigner matrices. This paper derives a closed-form expression of the spectral cumulative distribution function (CDF) for Wigner matrices of finite sizes. The expression does not involve any derivatives and integrals, and therefore can be easily computed. Then we apply it to quantifying the LPI performance of radar waveforms, and the Kullback-Leibler divergence (KLD) is also used in the process of quantification. Simulation results show that the proposed LPI metric which considers the finite sample size and signal-to-noise ratio is more effective and practical.

  • An Effective and Simple Solution for Stationary Target Localization Using Doppler Frequency Shift Measurements

    Li Juan DENG  Ping WEI  Yan Shen DU  Wan Chun LI  Ying Xiang LI  Hong Shu LIAO  

     
    LETTER-Digital Signal Processing

      Vol:
    E100-A No:4
      Page(s):
    1070-1073

    Target determination based on Doppler frequency shift (DFS) measurements is a nontrivial problem because of the nonlinear relation between the position space and the measurements. The conventional methods such as numerical iterative algorithm and grid searching are used to obtain the solution, while the former requires an initial position estimate and the latter needs huge amount of calculations. In this letter, to avoid the problems appearing in those conventional methods, an effective solution is proposed, in which two best linear unbiased estimators (BULEs) are employed to obtain an explicit solution of the proximate target position. Subsequently, this obtained explicit solution is used to initialize the problem of original maximum likelihood estimation (MLE), which can provide a more accurate estimate.

  • Decision Feedback Equalizer with Frequency Domain Bidirectional Noise Prediction for MIMO-SCFDE System

    Zedong XIE  Xihong CHEN  Xiaopeng LIU  Lunsheng XUE  Yu ZHAO  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2016/09/12
      Vol:
    E100-B No:3
      Page(s):
    433-439

    The impact of intersymbol interference (ISI) on single carrier frequency domain equalization with multiple input multiple output (MIMO-SCFDE) systems is severe. Most existing channel equalization methods fail to solve it completely. In this paper, given the disadvantages of the error propagation and the gap from matched filter bound (MFB), we creatively introduce a decision feedback equalizer with frequency-domain bidirectional noise prediction (DFE-FDBiNP) to tackle intersymbol interference (ISI) in MIMO-SCFDE systems. The equalizer has two-part equalizer, that is the normal mode and the time-reversal mode decision feedback equalization with noise prediction (DFE-NP). Equal-gain combining is used to realize a greatly simplified and low complexity diversity combining. Analysis and simulation results validate the improved performance of the proposed method in quasi-static frequency-selective fading MIMO channel for a typical urban environment.

  • A Hardware Efficient Multiple-Stream Pipeline FFT Processor for MIMO-OFDM Systems

    Kai-Feng XIA  Bin WU  Tao XIONG  Tian-Chun YE  Cheng-Ying CHEN  

     
    PAPER-Digital Signal Processing

      Vol:
    E100-A No:2
      Page(s):
    592-601

    In this paper, a hardware efficient design methodology for a configurable-point multiple-stream pipeline FFT processor is presented. We first compared the memory and arithmetic components of different pipeline FFT architectures, and obtained the conclusion that MDF architecture is more hardware efficient than MDC for the overall processor. Then, in order to reduce the computational complexity, a binary-tree representation was adopted to analyze the decomposition algorithm. Consequently, the coefficient multiplications are minimized among all the decomposition probabilities. In addition, an efficient output reorder circuit was designed for the multiple-stream architecture. An 128∼2048 point 4-stream FFT processor in LTE system was designed in SMIC 55nm technology for evaluation. It owns 1.09mm2 core area with 82.6mW power consumption at 122.88MHz clock frequency.

  • Contrast Enhancement of Mycobacterium Tuberculosis Images Based on Improved Histogram Equalization

    Chao XU  Dongxiang ZHOU  Keju PENG  Weihong FAN  Yunhui LIU  

     
    LETTER-Biological Engineering

      Pubricized:
    2016/07/27
      Vol:
    E99-D No:11
      Page(s):
    2847-2850

    There are often low contrast Mycobacterium tuberculosis (MTB) objects in the MTB images. Based on improved histogram equalization (HE), a framework of contrast enhancement is proposed to increase the contrast of MTB images. Our proposed algorithm was compared with the traditional HE and the weighted thresholded HE. The experimental results demonstrate that our proposed algorithm has better performance in contrast enhancement, artifacts suppression, and brightness preserving for MTB images.

  • Fast Spectral BRDF & BTDF Measurements for Characterization of Displays and Components Open Access

    Pierre BOHER  Thierry LEROUX  Véronique COLLOMB-PATTON  Thibault BIGNON  

     
    INVITED PAPER

      Vol:
    E99-C No:11
      Page(s):
    1255-1263

    In the present paper we show how to obtain rapidly the spectral BRDF and BTDF of different display components or transparent displays using Fourier optics system under different illumination configurations. Results can be used to simulate the entire structure of a LCD display or to predict transparent display performances under various illuminations.

21-40hit(310hit)