Takuya SAKAMOTO Itsuki IWATA Toshiki MINAMI Takuya MATSUMOTO
There has been a growing interest in the application of radar technology to the monitoring of humans and animals and their positions, motions, activities, and vital signs. Radar can be used, for example, to remotely measure vital signs such as respiration and heartbeat without contact. Radar-based human sensing is expected to be adopted in a variety of fields, such as medicine, healthcare, and entertainment, but what can be realized by radar-based animal sensing? This paper reviews the latest research trends in the noncontact sensing of animals using radar systems. We also present examples of our past radar experiments for the respiratory measurement of monkeys and the heartbeat measurement of chimpanzees. The trends in this field are reviewed in terms of the target animal species, type of vital sign, and radar type and selection of frequencies.
Reliability is an important figure of merit of the system and it must be satisfied in safety-critical applications. This paper considers parallel applications on heterogeneous embedded systems and proposes a two-phase algorithm framework to minimize energy consumption for satisfying applications’ reliability requirement. The first phase is for initial assignment and the second phase is for either satisfying the reliability requirement or improving energy efficiency. Specifically, when the application’s reliability requirement cannot be achieved via the initial assignment, an algorithm for enhancing the reliability of tasks is designed to satisfy the application’s reliability requirement. Considering that the reliability of initial assignment may exceed the application’s reliability requirement, an algorithm for reducing the execution frequency of tasks is designed to improve energy efficiency. The proposed algorithms are compared with existing algorithms by using real parallel applications. Experimental results demonstrate that the proposed algorithms consume less energy while satisfying the application’s reliability requirements.
We consider the problem of finding the best subset of sensors in wireless sensor networks where linear Bayesian parameter estimation is conducted from the selected measurements corrupted by correlated noise. We aim to directly minimize the estimation error which is manipulated by using the QR and LU factorizations. We derive an analytic result which expedites the sensor selection in a greedy manner. We also provide the complexity of the proposed algorithm in comparison with previous selection methods. We evaluate the performance through numerical experiments using random measurements under correlated noise and demonstrate a competitive estimation accuracy of the proposed algorithm with a reasonable increase in complexity as compared with the previous selection methods.
Takahiro IINUMA Yudai EBATO Sou NOBUKAWA Nobuhiko WAGATSUMA Keiichiro INAGAKI Hirotaka DOHO Teruya YAMANISHI Haruhiko NISHIMURA
Stochastic resonance is a representative phenomenon in which the degree of synchronization with a weak input signal is enhanced using additive stochastic noise. In systems with multiple chaotic attractors, the chaos-chaos intermittent behavior in attractor-merging bifurcation induces chaotic resonance, which is similar to the stochastic resonance and has high sensitivity. However, controlling chaotic resonance is difficult because it requires adjusting the internal parameters from the outside. The reduced-region-of-orbit (RRO) method, which controls the attractor-merging bifurcation using an external feedback signal, is employed to overcome this issue. However, the lower perturbation of the feedback signal requires further improvement for engineering applications. This study proposed an RRO method with more sophisticated and less perturbed feedback signals, called the double-Gaussian-filtered RRO (DG-RRO) method. The inverse sign of the map function and double Gaussian filters were used to improve the local specification, i.e., the concentration around the local maximum/minimum in the feedback signals, called the DG-RRO feedback signals. Owing to their fine local specification, these signals achieved the attractor-merging bifurcation with significantly smaller feedback perturbation than that in the conventional RRO method. Consequently, chaotic resonance was induced through weak feedback perturbation. It exhibited greater synchronization against weak input signals than that induced by the conventional RRO feedback signal and sustained the same level of response frequency range as that of the conventional RRO method. These advantages may pave the way for utilizing chaotic resonance in engineering scenarios where the stochastic resonance has been applied.
Pingping JI Lingge JIANG Chen HE Di HE Zhuxian LIAN
In this letter, we study the dynamic antenna grouping and the hybrid beamforming for high altitude platform (HAP) massive multiple-input multiple-output (MIMO) systems. We first exploit the fact that the ergodic sum rate is only related to statistical channel state information (SCSI) in the large-scale array regime, and then we utilize it to perform the dynamic antenna grouping and design the RF beamformer. By applying the Gershgorin Circle Theorem, the dynamic antenna grouping is realized based on the novel statistical distance metric instead of the value of the instantaneous channels. The RF beamformer is designed according to the singular value decomposition of the statistical correlation matrix according to the obtained dynamic antenna group. Dynamic subarrays mean each RF chain is linked with a dynamic antenna sub-set. The baseband beamformer is derived by utilizing the zero forcing (ZF). Numerical results demonstrate the performance enhancement of our proposed dynamic hybrid precoding (DHP) algorithm.
Xianglong LI Yuan LI Jieyuan ZHANG Xinhai XU Donghong LIU
In many real-world problems, a complex task is typically composed of a set of subtasks that follow a certain execution order. Traditional multi-agent reinforcement learning methods perform poorly in such multi-task cases, as they consider the whole problem as one task. For such multi-agent multi-task problems, heterogeneous relationships i.e., subtask-subtask, agent-agent, and subtask-agent, are important characters which should be explored to facilitate the learning performance. This paper proposes a dynamic heterogeneous graph based agent allocation-action learning framework. Specifically, a dynamic heterogeneous graph model is firstly designed to characterize the variation of heterogeneous relationships with the time going on. Then a multi-subgraph partition method is invented to extract features of heterogeneous graphs. Leveraging the extracted features, a hierarchical framework is designed to learn the dynamic allocation of agents among subtasks, as well as cooperative behaviors. Experimental results demonstrate that our framework outperforms recent representative methods on two challenging tasks, i.e., SAVETHECITY and Google Research Football full game.
The steady-state and convergence performances are important indicators to evaluate adaptive algorithms. The step-size affects these two important indicators directly. Many relevant scholars have also proposed some variable step-size adaptive algorithms for improving performance. However, there are still some problems in these existing variable step-size adaptive algorithms, such as the insufficient theoretical analysis, the imbalanced performance and the unachievable parameter. These problems influence the actual performance of some algorithms greatly. Therefore, we intend to further explore an inherent relationship between the key performance and the step-size in this paper. The variation of mean square deviation (MSD) is adopted as the cost function. Based on some theoretical analyses and derivations, a novel variable step-size algorithm with a dynamic limited function (DLF) was proposed. At the same time, the sufficient theoretical analysis is conducted on the weight deviation and the convergence stability. The proposed algorithm is also tested with some typical algorithms in many different environments. Both the theoretical analysis and the experimental result all have verified that the proposed algorithm equips a superior performance.
Mikiya YOSHIDA Yusuke ITO Yurino SATO Hiroyuki KOGA
Information-centric networking (ICN) provides low-latency content delivery with in-network caching, but delivery latency depends on cache distance from consumers. To reduce delivery latency, a scheme to cluster domains and retain the main popular content in each cluster with a cache distribution range has been proposed, which enables consumers to retrieve content from neighboring clusters/caches. However, when the distribution of content popularity changes, all content caches may not be distributed adequately in a cluster, so consumers cannot retrieve them from nearby caches. We therefore propose a dynamic clustering scheme to adjust the cache distribution range in accordance with the change in content popularity and evaluate the effectiveness of the proposed scheme through simulation.
To reduce the common mode voltage (CMV), suppress the CMV spikes, and improve the steady-state performance, a simplified reactive torque model predictive control (RT-MPC) for induction motors (IMs) is proposed. The proposed prediction model can effectively reduce the complexity of the control algorithm with the direct torque control (DTC) based voltage vector (VV) preselection approach. In addition, the proposed CMV suppression strategy can restrict the CMV within ±Vdc/6, and does not require the exclusion of non-adjacent non-opposite VVs, thus resulting in the system showing good steady-state performance. The effectiveness of the proposed design has been tested and verified by the practical experiment. The proposed algorithm can reduce the execution time by an average of 26.33% compared to the major competitors.
Ayano OKOSO Keisuke OTAKI Yoshinao ISHII Satoshi KOIDE
Owing to the COVID-19 pandemic, many academic conferences are now being held online. Our study focuses on online video conferences, where participants can watch pre-recorded embedded videos on a conference website. In online video conferences, participants must efficiently find videos that match their interests among many candidates. There are few opportunities to encounter videos that they may not have planned to watch but may be of interest to them unless participants actively visit the conference. To alleviate these problems, the introduction of a recommender system seems promising. In this paper, we implemented typical recommender systems for the online video conference with 4,000 participants and analyzed users’ behavior through A/B testing. Our results showed that users receiving recommendations based on collaborative filtering had a higher continuous video-viewing rate and spent longer on the website than those without recommendations. In addition, these users were exposed to broader videos and tended to view more from categories that are usually less likely to view together. Furthermore, the impact of the recommender system was most significant among users who spent less time on the site.
Chunhua QIAN Xiaoyan QIN Hequn QIANG Changyou QIN Minyang LI
The segmentation performance of fresh tea sprouts is inadequate due to the uncontrollable posture. A novel method for Fresh Tea Sprouts Segmentation based on Capsule Network (FTS-SegCaps) is proposed in this paper. The spatial relationship between local parts and whole tea sprout is retained and effectively utilized by a deep encoder-decoder capsule network, which can reduce the effect of tea sprouts with uncontrollable posture. Meanwhile, a patch-based local dynamic routing algorithm is also proposed to solve the parameter explosion problem. The experimental results indicate that the segmented tea sprouts via FTS-SegCaps are almost coincident with the ground truth, and also show that the proposed method has a better performance than the state-of-the-art methods.
Ryosuke SAEKI Takeshi HAYASHI Ibuki YAMAMOTO Kinya FUJITA
This study discusses the feasibility to estimate the concentration level of Japanese document workers using computer. Based on the previous findings that dual-task scenarios increase reaction time, we hypothesized that the Kana-Kanji conversion confirmation time (KKCCT) would increase due to the decrease in cognitive resources allocated to the document task, i.e. the level of concentration on the task at hand. To examine this hypothesis, we conducted a set of experiments in which sixteen participants copied Kana text by typing and concurrently converted it into Kanji under three conditions: Normal, Dual-task, and Mental-fatigue. The results suggested the feasibility that KKCCT increased when participants were less concentrated on the task due to subtask or mental fatigue. These findings imply the potential utility of using confirmation time as a measure of concentration level in Japanese document workers.
Zhishu SUN Zilong XIAO Yuanlong YU Luojun LIN
Facial Beauty Prediction (FBP) is a significant pattern recognition task that aims to achieve consistent facial attractiveness assessment with human perception. Currently, Convolutional Neural Networks (CNNs) have become the mainstream method for FBP. The training objective of most conventional CNNs is usually to learn static convolution kernels, which, however, makes the network quite difficult to capture global attentive information, and thus usually ignores the key facial regions, e.g., eyes, and nose. To tackle this problem, we devise a new convolution manner, Dynamic Attentive Convolution (DyAttenConv), which integrates the dynamic and attention mechanism into convolution in kernel-level, with the aim of enforcing the convolution kernels adapted to each face dynamically. DyAttenConv is a plug-and-play module that can be flexibly combined with existing CNN architectures, making the acquisition of the beauty-related features more globally and attentively. Extensive ablation studies show that our method is superior to other fusion and attention mechanisms, and the comparison with other state-of-the-arts also demonstrates the effectiveness of DyAttenConv on facial beauty prediction task.
Takumi KOMORI Yutaka MASUDA Tohru ISHIHARA
Recent embedded systems require both traditional machinery control and information processing, such as network and GUI handling. A dual-OS platform consolidates a real-time OS (RTOS) and general-purpose OS (GPOS) to realize efficient software development on one physical processor. Although the dual-OS platform attracts increasing attention, it often suffers from energy inefficiency in the GPOS for guaranteeing real-time responses of the RTOS. This paper proposes an energy minimization method called DVFS virtualization, which allows running multiple DVFS policies dedicated to the RTOS and GPOS, respectively. The experimental evaluation using a commercial microcontroller showed that the proposed hardware could change the supply voltage within 500 ns and reduce the energy consumption of typical applications by 60 % in the best case compared to conventional dual-OS platforms. Furthermore, evaluation using a commercial microprocessor achieved a 15 % energy reduction of practical open-source software at best.
This paper focuses on a pseudorandom number generator called an NTU sequence for use in cryptography. The generator is defined with an m-sequence and Legendre symbol over an odd characteristic field. Since the previous researches have shown that the generator has maximum complexity; however, its bit distribution property is not balanced. To address this drawback, the author introduces dynamic mapping for the generation process and evaluates the period and some distribution properties in this paper.
Kyosuke YAMASHITA Ryu ISHII Yusuke SAKAI Tadanori TERUYA Takahiro MATSUDA Goichiro HANAOKA Kanta MATSUURA Tsutomu MATSUMOTO
A fault-tolerant aggregate signature (FT-AS) scheme is a variant of an aggregate signature scheme with the additional functionality to trace signers that create invalid signatures in case an aggregate signature is invalid. Several FT-AS schemes have been proposed so far, and some of them trace such rogue signers in multi-rounds, i.e., the setting where the signers repeatedly send their individual signatures. However, it has been overlooked that there exists a potential attack on the efficiency of bandwidth consumption in a multi-round FT-AS scheme. Since one of the merits of aggregate signature schemes is the efficiency of bandwidth consumption, such an attack might be critical for multi-round FT-AS schemes. In this paper, we propose a new multi-round FT-AS scheme that is tolerant of such an attack. We implement our scheme and experimentally show that it is more efficient than the existing multi-round FT-AS scheme if rogue signers randomly create invalid signatures with low probability, which for example captures spontaneous failures of devices in IoT systems.
Takashi YAMAZOE Jinyu TANG Gin INOUE Kenji SUGIYAMA
HDR video is possible to display the maximum 1200% luminance, however, it is limited in SDR display. In this study, we expand high luminance area considering with perceptual performance to improve a presentation performance of HDR video in the SDR display. As results of objective experiments, it is recognized that the proposed method can improve the presentation performance maximally 0.8dB in WPSNR.
In recent years, microwave wireless power transfer (WPT) has attracted considerable attention due to the increasing demand for various sensors and Internet of Things (IoT) applications. Microwave WPT requires technology that can detect and avoid human bodies in the transmission path. Using a phantom is essential for developing such technology in terms of standardization and human body protection from electromagnetic radiation. In this study, a simple and lightweight phantom was developed focusing on its radar cross-section (RCS) to evaluate human body avoidance technology for use in microwave WPT systems. The developed phantom's RCS is comparable to that of the human body.
Takafumi TANAKA Hiroshi HASEGAWA
In this paper, we propose a heuristic planning method to efficiently accommodate dynamic multilayer path (MLP) demand in multilayer networks consisting of a Time Division Multiplexing (TDM) layer and a Wavelength Division Multiplexing (WDM) layer; the goal is to achieve the flexible accommodation of increasing capacity and diversifying path demands. In addition to the grooming of links at the TDM layer and the route and frequency slots for the elastic optical path to be established, MLP requires the selection of an appropriate operational mode, consisting of a combination of modulation formats and symbol rates supported by digital coherent transceivers. Our proposed MLP planning method defines a planning policy for each of these parameters and embeds the values calculated by combining these policies in an auxiliary graph, which allows the planning parameters to be calculated for MLP demand requirements in a single step. Simulations reveal that the choice of operational mode significantly reduces the blocking probability and demonstrate that the edge weights in the auxiliary graph allow MLP planning with characteristics tailored to MLP demand and network requirements. Furthermore, we quantitatively evaluate the impact of each planning policy on the MLP planning results.
Weisong LIAO Akira KAINO Tomoaki MASHIKO Sou KUROMASA Masatoshi SAKAI Kazuhiro KUDO
We observed dynamical carrier motion in an OLED device under an external reverse bias application using ExTDR measurement. The rectangular wave pulses were used in our ExTDR to observe the transient impedance of the OLED sample. The falling edge of the transmission waveform reflects the transient impedance after applying pulse voltage during the pulse width. The observed pulse width variation at the falling edge waveform indicates that the frontline of the hole distribution in the hole transport layer was forced to move backward to the ITO electrode.