Byung-Bog LEE Se-Jin KIM Seung-Yeon KIM Hyong-Woo LEE Seung-Wan RYU Choong-Ho CHO
This letter proposes a wakeup-on-demand scheme based on the idea that a device should be awakened just when it has to receive a packet from a neighboring device. To prove this scheme, this letter proposes a mathematical model based on the busy cycle of M/G/1 queuing systems to obtain a battery lifetime of one-hop cluster-topology shaped W-WSN.
Ji-Soo KEUM Hyon-Soo LEE Masafumi HAGIWARA
In this letter, we propose an improved anchor shot detection (ASD) method in order to effectively retrieve anchor shots from news video. The face location and dissimilarity of icon region are used to reduce false alarms in the proposed method. According to the results of the experiment on several types of news video, the proposed method obtained high anchor detection results compared with previous methods.
Ji-Soo KEUM Hyon-Soo LEE Masafumi HAGIWARA
In this letter, we propose an improved speech/ nonspeech classification method to effectively classify a multimedia source. To improve performance, we introduce a feature based on spectral duration analysis, and combine recently proposed features such as high zero crossing rate ratio (HZCRR), low short time energy ratio (LSTER), and pitch ratio (PR). According to the results of our experiments on speech, music, and environmental sounds, the proposed method obtained high classification results when compared with conventional approaches.
Tzuen-Hsi HUANG Yuan-Ru TSENG Shang-Hsun WU
This paper presents a real integration of a 5.8-GHz injection-locked quadrature local oscillator that includes two LC-tuned injection-locked frequency dividers (ILFDs) and a wide-tuning stacked-transformer feedback voltage-controlled oscillator (VCO) operated in double frequency. A symmetric differential stacked-transformer with a high coupling factor and a high quality factor is used as a feedback component for the wide-tuning VCO design. The wide tuning range, which is greater than three times the desired bandwidth, is achieved by selecting a greater tuning capacitance ratio available from high-voltage N-type accumulation-mode MOS varactors and a smaller self-inductance stacked-transformer. Since the quality factors of the LC-resonator components can sustain at a high enough level, the wide-tuning VCO does not suffer from the phase noise degradation too much. In addition, the tuning range of the local oscillator is extended simultaneously by utilizing switched capacitor arrays (SCAs) in the ILFDs. The circuit is implemented by TSMC's 0.18-µm RF CMOS technology. At a 1-V power supply, the whole integrated circuit dissipates 6.72 mW (4.05 mW for the VCO and 2.67 mW for the two ILFDs). The total tuning range frequency is about 500 MHz (from 5.54 GHz to 6.04 GHz) when the tuning voltage Vtune ranges from 0 V to 1.8 V. At around the output frequency of 5.77 GHz (at Vtune = 0.5 V), the measured phase noise of this local oscillator is -119.4 dBc/Hz at a 1-MHz offset frequency. This work satisfies the specification requirement for IEEE 802.11a UNII-3 band application. The corresponding figure-of-merit (FOM) calculated is 186.3 dB.
With simultaneous multi-user transmissions, spatial division multiple access (SDMA) provides substantial throughput gain over the single user transmission. However, its implementation in WLANs with contention-based IEEE 802.11 MAC remains challenging. Problems such as coordinating and synchronizing the multiple users need to be solved in a distributed way. In this paper, we propose a distributed MAC protocol for WLANs with SDMA support. A dual-mode CTS responding mechanism is designed to accomplish the channel estimation and user synchronization required for SDMA. We analytically study the throughput performance of the proposed MAC, and dynamic parameter adjustment is designed to enhance the protocol efficiency. In addition, the proposed MAC protocol does not rely on specific physical layer realizations, and can work on legacy IEEE 802.11 equipment with slight software updates. Simulation results show that the proposed MAC outperforms IEEE 802.11 significantly, and that the dynamic parameter adjustment can effectively track the load variation in the network.
We present a congestion control algorithm for the Internet and assess its stability. The algorithm has low operation complexity and exercises control over sources without keeping per-flow information. Given the lack of support for explicit-rate feedback in the Internet, we discuss an implementation where feedback is based on explicit binary indications. We assess the stability through a discrete-time model and present simulation results showing the efficacy of the algorithm. The obtained results indicate that when the algorithm is used to control sources that support explicit binary feedback, its stability is not affected and its performance is close to that obtained with sources that support explicit-rate feedback.
In wireless networks, sleep mode based power saving mechanisms can reduce the energy consumption at the expense of additional packet delay. This letter analyzes its packet queueing delay and wireless terminals' energy efficiency. Based on the analysis, optimal sleep window size can be derived to optimize terminal energy efficiency with delay constraint.
Miroslav SAMARDIJA Jiro HIROKAWA Makoto ANDO
A series of windows in the narrow wall of a fully-dielectric-filled rectangular waveguide to feed partially-dielectric-filled oversized-rectangular waveguide is presented. The overall structure is single-layer and 3-dimensional however; the waveguide which is uniform along the height is analyzed by the 2-dimensional method of moments and the oversized waveguide which is uniform in the longitudinal direction of the waveguide is analyzed by the 2-dimensional mode matching. It is found that utilizing simple mode conversions between the two orthogonally uniform structures is sufficient for obtaining the results similar to those of a 3-dimensional solver HFSS. The parameters for the windows designed for a uniform input division are presented. A simulation shows that a 12 window array provides a 3.5% bandwidth in terms of reflection below -20 dB. The uniform excitation of the quasi-TEM wave is confirmed in the 60 GHz band by measuring a uniform aperture field in amplitude and phase over the slotted oversized-waveguide.
Min Li HUANG Jin LEE Hendra SETIAWAN Hiroshi OCHI Sin-Chong PARK
With the growing demand for high-performance multimedia applications over wireless channels, we need to develop a Medium Access Control (MAC) system that supports high throughput and quality of service enhancements. This paper presents the standard analysis, design architecture and design issues leading to the implementation of an IEEE 802.11e based MAC system that supports MAC throughput of over 100 Mbps. In order to meet the MAC layer timing constraints, a hardware/software co-design approach is adopted. The proposed MAC architecture is implemented on the Xilinx Virtex-II Pro Field-Programmable Gate Array (FPGA) (XC2VP70-5FF1704C) prototype, and connected to a host computer through an external Universal Serial Bus (USB) interface. The total FPGA resource utilization is 11,508 out of 33,088 (34%) available slices. The measured MAC throughput is 100.7 Mbps and 109.2 Mbps for voice and video access categories, transmitted at a data rate of 260 Mbps based on IEEE 802.11n Physical Layer (PHY), using the contention-based hybrid coordination function channel access mechanism.
This paper describes diffusion of electric vehicles and novel social infrastructure from the viewpoint of systems innovation theory considering both human society aspects and elemental technological aspects. Firstly, fundamentals of the systems innovation theory and the platform theory are mentioned. Secondly, discussion on mobility from the viewpoint of the human-society layer and discussion of electrical vehicles from the viewpoint of the elemental techniques are carried out. Thirdly, based on those, R & D, measures are argued such as establishment of the ubiquitous noncontact feeding and authentication payment system is important. Finally, it is also insisted that after the establishment of this system the super smart grid with temporal and spatial control including demand itself with the low social cost will be expected.
Keiki TAKADAMA Kazuyuki HIROSE Hiroyasu MATSUSHIMA Kiyohiko HATTORI Nobuo NAKAJIMA
This paper proposes the sleep stage estimation method that can provide an accurate estimation for each person without connecting any devices to human's body. In particular, our method learns the appropriate multiple band-pass filters to extract the specific wave pattern of heartbeat, which is required to estimate the sleep stage. For an accurate estimation, this paper employs Learning Classifier System (LCS) as the data-mining techniques and extends it to estimate the sleep stage. Extensive experiments on five subjects in mixed health confirm the following implications: (1) the proposed method can provide more accurate sleep stage estimation than the conventional method, and (2) the sleep stage estimation calculated by the proposed method is robust regardless of the physical condition of the subject.
This paper presents a domain-ontology driven multi-agent based scheme for representing the knowledge of the communication network management system. In the proposed knowledge-intensive framework, the static domain-related concepts are articulated as the domain knowledge ontology. The experiential knowledge for managing the network is represented as the fault-case reasoning models, and it is explicitly encoded as the core knowledge of multi-agent middleware layer as heuristic production-type rules. These task-oriented management expertise manipulates the domain content and structure during the diagnostic sessions. The agents' rules along with the embedded generic java-based problem-solving algorithms and run-time log information, perform the automated management tasks. For the proof of concept, an experimental network system has been implemented in our laboratory, and the deployment of some test-bed scenarios is performed. Experimental results confirm a marked reduction in the management-overhead of the network administrator, as compared to the manual network management techniques, in terms of the time-taken and effort-done during a particular fault-diagnosis session. Validation of the reusability/modifiability aspects of our system, illustrates the flexible manipulation of the knowledge fragments within diverse application contexts. The proposed approach can be regarded as one of the pioneered steps towards representing the network knowledge via reusable domain ontology and intelligent agents for the automated network management support systems.
Taeshik SHON Eui-jik KIM Jeongsik IN Yongsuk PARK
In this letter, we propose an energy efficient hybrid architecture, the Hybrid MAC-based Robust Architecture (HMR), for wireless sensor networks focusing on MAC layer's scheduling and adaptive security suite as a security sub layer. A hybrid MAC layer with TDMA and CSMA scheduling is designed to prolong network life time, and the multi-channel TDMA based active/sleep scheduling is presented. We also present the security related functionalities needed to employ a flexible security suite to packets dynamically. Implementation and testbed of the proposed framework based on IEEE 802.15.4 are shown as well.
Ithipan METHASATE Thanaruk THEERAMUNKONG
Finding a kernel mapping function for support vector machines (SVMs) is a key step towards construction of a high-performanced SVM-based classifier. While some recent methods exploited an evolutional approach to construct a suitable multifunction kernel, most of them searched randomly and diversely. In this paper, the concept of a family of identical-structured kernel trees is proposed to enable exploration of structure space using genetic programming whereas to pursue investigation of parameter space on a certain tree using evolution strategy. To control balance between structure and parameter search towards an optimal kernel, simulated annealing is introduced. By experiments on a number of benchmark datasets in the UCI and text classification collection, the proposed method is shown to be able to find a better optimal solution than other search methods, including grid search and gradient search.
Keiichiro OURA Heiga ZEN Yoshihiko NANKAKU Akinobu LEE Keiichi TOKUDA
A technique for reducing the footprints of HMM-based speech synthesis systems by tying all covariance matrices of state distributions is described. HMM-based speech synthesis systems usually leave smaller footprints than unit-selection synthesis systems because they store statistics rather than speech waveforms. However, further reduction is essential to put them on embedded devices, which have limited memory. In accordance with the empirical knowledge that covariance matrices have a smaller impact on the quality of synthesized speech than mean vectors, we propose a technique for clustering mean vectors while tying all covariance matrices. Subjective listening test results showed that the proposed technique can shrink the footprints of an HMM-based speech synthesis system while retaining the quality of the synthesized speech.
This study investigates a band extension technique for narrow-band telephony speech. The proposed technique employs full wave rectification that nonlinearly generates high-band overtones from the low band. In order to improve the conventional technique, this study investigates a frame-by-frame gain control based on the estimation of gain parameter from narrow-band telephony speech. A subjective evaluation indicates that the proposed technique outperforms the conventional technique.
Won-Seok OH Kang-Yeob PARK Kyu-Ho PARK Chang-Joon KIM Jong-Kook MOON
In this paper, a 10-Gb/s CMOS optical receiver analog front-end is designed and implemented in 0.13-µm CMOS technology. An optical receiver analog front-end includes a pre-amplifier and a post amplifier. To ensure 10-Gb/s operation, the effect of inherent photodiode parasitic capacitance should be suppressed. Thus, an advanced common-gate stage is exploited as the input stage of pre amplifier. To enhance the bandwidth without a passive inductor, a new post amplifier with active feedback and negative capacitance compensation techniques is proposed. A prototype chip has 98-dBΩ of trans-impedance gain (ZT), corresponding 40-dB input dynamic range (5-µA to 500-µA) and minimum allowable input current (5-µA). Also, the receiver achieves the bandwidth of 7.5-GHz for 0.25-pF photodiode parasitic capacitance, and the measured optical sensitivity equals -18-dBm for 10-12 bit error rate (BER).
Young H. JUNG Hong-Sik KIM Yoonsik CHOE
This paper describes a channel-adaptive packet scheduler for improved error control performance in a peer-cooperative distributed media streaming system. The proposed packet-scheduling algorithm was designed for the case in which streaming server peers rely on an error-recovery strategy using retransmission and application-layer automatic repeat request rather than error protection using forward error correction. The proposed scheduler can maximize retransmission opportunities and reduce the frame loss rate by using the observed channel status from each server peer. Simulation results show that the proposed algorithm enhances error-recovery performance in distributed multimedia streaming better than other schedulers.
Set-partitioning in hierarchical trees (SPIHT) is one of the well-known image compression schemes. SPIHT offers an agreeable compression ratio and produces an embedded bit-stream for progressive transmission. However, the major disadvantage of SPIHT is its large memory requirement. In this paper, we propose a memory efficient SPIHT image coder and its parallel implantation. The memory requirement is reduced without sacrificing image quality. All bit-planes are concurrently encoded in order to speed up the entire coding flow. The result shows that the proposed algorithm is roughly 6 times faster than the original SPIHT. For a 512512 image, the memory requirement is reduced from 5.83 Mb to 491 Kb. The proposed algorithm is also realized on FPGA. With pipeline design, the circuit can run at 110 MHz, which can encode a 512512 image in 1.438 ms. Thus, the circuit achieves very high throughput, 182 MPixels/sec, and can be applied to high performance image compression applications.
Suyong EUM Shin'ichi ARAKAWA Masayuki MURATA
Topological structure of peer-to-peer (P2P) networks affects their operating performance. Thus, various models have been proposed to construct an efficient topology for the P2P networks. However, due to the simultaneous failures of peers and other disastrous events, it is difficult to maintain the originally designed topological structure that provides the network with some performance benefits. For this reason, in this paper we propose a simple local rewiring method that changes the network topology to have small diameter as well as highly clustered structure. Moreover, the presented evaluation study shows how these topological properties are involved with the performance of P2P networks.