The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ERG(867hit)

321-340hit(867hit)

  • Battery-Aware Task Scheduling for Energy Efficient Mobile Devices

    Kun WEI  Wuxiong ZHANG  Yang YANG  Guannan SONG  Zhengming ZHANG  

     
    LETTER-Systems and Control

      Vol:
    E97-A No:9
      Page(s):
    1971-1974

    Most of the previous work on power optimization regarded the capacity of battery power as an ideal constant value. In fact, experiments showed that 30% of the total battery capacity was wasted by improper discharge pattern [1]. In this letter, a battery-aware task scheduling protocol which harnesses one of the typical characteristics of batteries, i.e., battery recovery, is proposed to extend usage time for smart phones. The key idea is to adjust the working schedule of the components in smart phones for more energy recovering. Experiments show that when the proposed protocol is applied in an online music application, as much as 9% lifespan extension for batteries can be obtained.

  • Energy Efficient Multimedia Delivery Services over LTE/LTE-A Open Access

    Chadi KHIRALLAH  Dragan RASTOVAC  Dejan VUKOBRATOVIC  John THOMPSON  

     
    INVITED PAPER

      Vol:
    E97-B No:8
      Page(s):
    1504-1513

    Mobile video services are becoming a dominant traffic category in emerging fourth generation (4G) cellular networks such as the 3GPP Long-Term Evolution (LTE) and LTE-Advanced (LTE-A). In particular, mobile video unicasting services based on 3GPP Dynamic Adaptive Streaming over HTTP (DASH) and multicasting/broadcasting services based on 3GPP evolved Multimedia Multicast/Broadcast Service (eMBMS) will require considerable resources for high-quality service delivery with high coverage probability. Faced with the challenge of energy efficient multimedia service provisioning over LTE/LTE-A, in this paper, we present simple analytical tools for evaluation of average service data rates, bandwidth and energy-consumption requirements applicable for different multimedia delivery services and LTE/LTE-A radio access network (RAN) configurations. Moreover, we introduce and evaluate novel energy and bandwidth performance measures defined per unit of service. As a result, we are able to compare the efficiency of different multimedia service delivery configurations over LTE/LTE-A. In particular, in this paper, as a running example we focus on eMBMS and compare the Energy of Service (EoS) of the two macro-cellular LTE/LTE-A configurations recently proposed in 3GPP: i) a single frequency network eMBMS (SFN-eMBMS), and ii) a single-cell eMBMS (SC-eMBMS). Furthermore, we extend this analysis to eMBMS provisioning over Heterogeneous Networks (HetNets) environment. However, the methodology presented is general and targets light-weight system design and comparison of bandwidth/energy costs of different LTE/LTE-A multimedia service delivery configurations.

  • Tracking Analysis of Adaptive Filters with Error and Matrix Data Nonlinearities

    Wemer M. WEE  Isao YAMADA  

     
    PAPER-Digital Signal Processing

      Vol:
    E97-A No:8
      Page(s):
    1659-1673

    We consider a unified approach to the tracking analysis of adaptive filters with error and matrix data nonlinearities. Using energy-conservation arguments, we not only derive earlier results in a unified manner, but we also obtain new performance results for more general adaptive algorithms without requiring the restriction of the regression data to a particular distribution. Numerical simulations support the theoretical results.

  • Wireless and Wireline Service Convergence in Next Generation Optical Access Networks — The FP7 WISCON Project

    J. J. VEGAS OLMOS  X. PANG  A. LEBEDEV  M. SALES  I. TAFUR MONROY  

     
    PAPER

      Vol:
    E97-B No:8
      Page(s):
    1537-1546

    The next generation of information technology demands both high capacity and mobility for applications such as high speed wireless access capable of supporting broadband services. The transport of wireless and wireline signals is converging into a common telecommunication infrastructure. In this paper, we will present the Marie Curie Framework Program 7 project “Wireless and wireline service convergence in next generation optical access networks” (WISCON), which focuses on the conception and study of novel architectures for wavelength-division-multiplexing (WDM) optical multi-modulation format radio-over-fiber (RoF) systems; this is a promising solution to implement broadband seamless wireless -wireline access networks. This project successfully concluded in autumn 2013, and is being follow up by another Marie Curie project entitled “flexible edge nodes for dynamic optical interconnection of access and core networks” (FENDOI), which will be also briefly described.

  • Performance Analysis of Cooperative-ARQ Schemes in Free-Space Optical Communications

    Vuong V. MAI  Anh T. PHAM  

     
    PAPER

      Vol:
    E97-B No:8
      Page(s):
    1614-1622

    We theoretically analyze the performance of free-space optical (FSO) systems using cooperative-ARQ (C-ARQ), a joint scheme of automatic-repeat-request (ARQ) and cooperative diversity, over atmospheric turbulence channels. We also propose a modified C-ARQ (M-C-ARQ) scheme that allows relay nodes to store a copy of frames for the more efficient response to transmission failure so that both transmission delay and energy consumption can be improved. Using Markov chain-based analytical models for both schemes, the system performance is analytically studied in terms of frame-error rate, goodput and energy efficiency, which directly reflect the transmission delay and energy consumption. Numerical results confirm that the proposed schemes outperform conventional ones. In addition, we discuss cross-layer design strategies for selecting parameters in both physical and link layers in order to optimize the performance of FSO systems over different atmospheric turbulence conditions and channel distances.

  • G2-Continuity Extension Algorithm of Ball B-Spline Curves

    Qianqian JIANG  Zhongke WU  Ting ZHANG  Xingce WANG  Mingquan ZHOU  

     
    PAPER-Modeling

      Vol:
    E97-D No:8
      Page(s):
    2030-2037

    Curve extension is a useful function in shape modeling for cyberworlds, while a Ball B-spline Curve (BBSC) has its advantages in representing freeform tubular objects. In this paper, an extension algorithm for the BBSC with G2-continuity is investigated. We apply the extending method of B-Spline curves to the skeleton of the BBSC through generalizing a minimal strain energy method from 2D to 3D. And the initial value of the G2-continuity parameter for the skeleton is selected by minimizing the approximate energy function which is a problem with O(1) time complexity. The corresponding radius function of the control ball points is determined through applying the G2-continuity conditions for the skeleton to the scalar function. In order to ensure the radii of the control ball points are positive, we make a decision about the range of the G2-continuity parameter for the radius and then determine it by minimizing the strain energy in the affected area. Some experiments comparing our method with other methods are given. And at the same time, we present the advantage of our method in modeling flexibility from the aspects of the skeleton and radius. The results illustrate our method for extending the BBSC is effective.

  • Analysis of Energy-Delay Trade-Off for Power-Saving Mechanism Specific to Request-and-Response-Based Applications

    Hyun-Ho CHOI  Jung-Ryun LEE  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:7
      Page(s):
    1422-1428

    We propose a power-saving mechanism (PSM) specific to request-and-response-based applications, which simply changes the order of the operating procedure of the legacy PSM by considering the attributes of the request-and-response delay. We numerically analyze the PSM with respect to the energy consumption and buffering delay and characterize this performance by employing a simple energy-delay trade-off (EDT) curve that is determined by the operating parameters. The resulting EDT curve clearly shows that the proposed PSM outperforms the legacy PSM.

  • A Novel Test Data Compression Scheme for SoCs Based on Block Merging and Compatibility

    Tiebin WU  Hengzhu LIU  Botao ZHANG  

     
    PAPER

      Vol:
    E97-A No:7
      Page(s):
    1452-1460

    This paper presents a novel test data compression scheme for SoCs based on block merging and compatibility. The technique exploits the properties of compatibility and inverse compatibility between consecutive blocks, consecutive merged blocks, and two halves of the encoding merged block itself to encode the pre-computed test data. The decompression circuit is simple to be implemented and has advantage of test-independent. In addition, the proposed scheme is applicable for IP cores in SoCs since it compresses the test data without requiring any structural information of the circuit under test. Experimental results demonstrate that the proposed technique can achieve an average compression ratio up to 68.02% with significant low test application time.

  • Player Tracking in Far-View Soccer Videos Based on Composite Energy Function

    Kazuya IWAI  Sho TAKAHASHI  Takahiro OGAWA  Miki HASEYAMA  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E97-D No:7
      Page(s):
    1885-1892

    In this paper, an accurate player tracking method in far-view soccer videos based on a composite energy function is presented. In far-view soccer videos, player tracking methods that perform processing based only on visual features cannot accurately track players since each player region becomes small, and video coding causes color bleeding between player regions and the soccer field. In order to solve this problem, the proposed method performs player tracking on the basis of the following three elements. First, we utilize visual features based on uniform colors and player shapes. Second, since soccer players play in such a way as to maintain a formation, which is a positional pattern of players, we use this characteristic for player tracking. Third, since the movement direction of each player tends to change smoothly in successive frames of soccer videos, we also focus on this characteristic. Then we adopt three energies: a potential energy based on visual features, an elastic energy based on formations and a movement direction-based energy. Finally, we define a composite energy function that consists of the above three energies and track players by minimizing this energy function. Consequently, the proposed method achieves accurate player tracking in far-view soccer videos.

  • Extremely Low Power Digital and Analog Circuits Open Access

    Hirofumi SHINOHARA  

     
    INVITED PAPER

      Vol:
    E97-C No:6
      Page(s):
    469-475

    Extremely low voltage operation near or below threshold voltage is a key circuit technology to improve the energy efficiency of information systems and to realize ultra-low power sensor nodes. However, it is difficult to operate conventional analog circuits based on amplifier at low voltage. Furthermore, PVT (Process, Voltage and Temperature) variation and random Vth variation degrade the minimum operation voltage and the energy efficiency in both digital and analog circuits. In this paper, extremely low power analog circuits based on comparator and switched capacitor as well as extremely low power digital circuits are presented. Many kinds of circuit technologies are applied to cope with the variation problem. Finally, image processing SoC that integrates digital and analog circuits is presented, where improvement of total performance by a cooperation of analog circuits and digital circuits is demonstrated.

  • Class Prior Estimation from Positive and Unlabeled Data

    Marthinus Christoffel DU PLESSIS  Masashi SUGIYAMA  

     
    LETTER-Artificial Intelligence, Data Mining

      Vol:
    E97-D No:5
      Page(s):
    1358-1362

    We consider the problem of learning a classifier using only positive and unlabeled samples. In this setting, it is known that a classifier can be successfully learned if the class prior is available. However, in practice, the class prior is unknown and thus must be estimated from data. In this paper, we propose a new method to estimate the class prior by partially matching the class-conditional density of the positive class to the input density. By performing this partial matching in terms of the Pearson divergence, which we estimate directly without density estimation via lower-bound maximization, we can obtain an analytical estimator of the class prior. We further show that an existing class prior estimation method can also be interpreted as performing partial matching under the Pearson divergence, but in an indirect manner. The superiority of our direct class prior estimation method is illustrated on several benchmark datasets.

  • Interleaved k-NN Classification and Bias Field Estimation for MR Image with Intensity Inhomogeneity

    Jingjing GAO  Mei XIE  Ling MAO  

     
    LETTER-Biological Engineering

      Vol:
    E97-D No:4
      Page(s):
    1011-1015

    k-NN classification has been applied to classify normal tissues in MR images. However, the intensity inhomogeneity of MR images forces conventional k-NN classification into significant misclassification errors. This letter proposes a new interleaved method, which combines k-NN classification and bias field estimation in an energy minimization framework, to simultaneously overcome the limitation of misclassifications in conventional k-NN classification and correct the bias field of observed images. Experiments demonstrate the effectiveness and advantages of the proposed algorithm.

  • New Constructions of Perfect 8-QAM+/8-QAM Sequences

    Chengqian XU  Xiaoyu CHEN  Kai LIU  

     
    LETTER-Coding Theory

      Vol:
    E97-A No:4
      Page(s):
    1012-1015

    This letter presents new methods for transforming perfect ternary sequences into perfect 8-QAM+ sequences. Firstly, based on perfect ternary sequences with even period, two mappings which can map two ternary variables to an 8-QAM+ symbol are employed for constructing new perfect 8-QAM+ sequences. In this case, the proposed construction is a generalization of the existing one. Then based on perfect ternary sequence with odd period, perfect 8-QAM sequences are generated. Compared with perfect 8-QAM+ sequences, the resultant sequences have no energy loss.

  • A Photovoltaic-Assisted CMOS Rectifier for Synergistic Energy Harvesting from Ambient Radio Waves

    Koji KOTANI  Takumi BANDO  Yuki SASAKI  

     
    PAPER

      Vol:
    E97-C No:4
      Page(s):
    245-252

    A photovoltaic (PV)-assisted CMOS rectifier was developed for efficient energy harvesting from ambient radio waves as one example of the synergistic energy harvesting concept. The rectifier operates truly synergistically. A pn junction diode acting as a PV cell converts light energy to DC bias voltage, which compensates the threshold voltage (Vth) of the MOSFETs and enhances the radio frequency (RF) to DC power conversion efficiency (PCE) of the rectifier even under extremely low input power conditions. The indoor illuminance level was sufficient to generate gate bias voltages to compensate Vths. Although the same PV cell structure for biasing nMOS and pMOS transistors was used, photo-generated bias voltages were found to become unbalanced due to the two-layered pn junction structures and parasitic bipolar transistor action. Under typical indoor lighting conditions, a fabricated PV-assisted rectifier achieved a PCE greater than 20% at an RF input power of -20dBm, a frequency of 920MHz, and an output load of 47kΩ. This PCE value is twice the value obtained by a conventional rectifier without PV assistance. In addition, it was experimentally revealed that if symmetric biasing voltages for nMOS and pMOS transistors were available, the PCE would increase even further.

  • Optimizing Virtual Machine Migration for Energy-Efficient Clouds

    Marat ZHANIKEEV  

     
    PAPER-Network

      Vol:
    E97-B No:2
      Page(s):
    450-458

    This paper proposes a new optimization problem and several implementation algorithms for energy-efficient clouds where energy efficiency is measured by the number of physical machines that can be removed from operation and turned off. The optimization problem is formulated is such a way that solutions are considered favorable not only when the number of migrations is minimized but also when the resulting layout has more free physical machines which can therefore be turned off to save electricity.

  • Low Cost Error Correction for Multi-Hop Data Aggregation Using Compressed Sensing

    Guangming CAO  Peter JUNG  Slawomir STANCZAK  Fengqi YU  

     
    LETTER-Information Network

      Vol:
    E97-D No:2
      Page(s):
    331-334

    Packet loss and energy dissipation are two major challenges of designing large-scale wireless sensor networks. Since sensing data is spatially correlated, compressed sensing (CS) is a promising reconstruction scheme to provide low-cost packet error correction and load balancing. In this letter, assuming a multi-hop network topology, we present a CS-oriented data aggregation scheme with a new measurement matrix which balances energy consumption of the nodes and allows for recovery of lost packets at fusion center without additional transmissions. Comparisons with existing methods show that the proposed scheme offers higher recovery precision and less energy consumption on TinyOS.

  • Weighted Hard Combination for Cooperative Spectrum Sensing under Noise Uncertainty

    Ruyuan ZHANG  Yafeng ZHAN  Yukui PEI  Jianhua LU  

     
    PAPER

      Vol:
    E97-B No:2
      Page(s):
    275-282

    Cooperative spectrum sensing is an effective approach that utilizes spatial diversity gain to improve detection performance. Most studies assume that the background noise is exactly known. However, this is not realistic because of noise uncertainty which will significantly degrade the performance. A novel weighted hard combination algorithm with two thresholds is proposed by dividing the whole range of the local test statistic into three regions called the presence, uncertainty and absence regions, instead of the conventional two regions. The final decision is made by weighted combination at the common receiver. The key innovation is the full utilization of the information contained in the uncertainty region. It is worth pointing out that the weight coefficient and the local target false alarm probability, which determines the two thresholds, are also optimized to minimize the total error rate. Numerical results show this algorithm can significantly improve the detection performance, and is more robust to noise uncertainty than the existing algorithms. Furthermore, the performance of this algorithm is not sensitive to the local target false alarm probability at low SNR. Under sufficiently high SNR condition, this algorithm reduces to the improved one-out-of-N rule. As noise uncertainty is unavoidable, this algorithm is highly practical.

  • A New Energy-Aware Source Routing Protocol for Maximization of Network Lifetime in MANET

    Hyun-Ho CHOI  Hyun-Gyu LEE  Jung-Ryun LEE  

     
    LETTER-Information Network

      Vol:
    E97-D No:2
      Page(s):
    335-339

    In this letter, we propose an energy-aware source routing protocol for maximizing the network lifetime in mobile ad hoc networks. We define a new routing cost by considering both transmit and receive power consumption and remaining battery level in each node simultaneously and present an efficient route discovery procedure to investigate the proposed routing cost. Intensive simulation verifies that the proposed routing protocol has similar performance to the conventional routing protocols in terms of the number of transmission hops, transmission rate, and energy consumption while significantly improving the performance with respect to network lifetime.

  • Toward Producing 3D Effects That Are Easily Viewed without Eye Strain or Fatigue

    Yuta SHIRATORI  Izumi TAKAHASHI  Keisuke SANO  Yuki SHIBUTA  Mitsuho YAMADA  

     
    LETTER

      Vol:
    E97-A No:2
      Page(s):
    543-546

    In a live 3D TV program, since a change and processing of an image is performed in real time, it is difficult to check depth perception in advance. From such a background, we made the trial 3D TV program where various visual effects were used and analyzed subject's vergence while viewing them.

  • A Novel Method for the Bi-directional Transformation between Human Living Activities and Appliance Power Consumption Patterns

    Xinpeng ZHANG  Yusuke YAMADA  Takekazu KATO  Takashi MATSUYAMA  

     
    PAPER-Pattern Recognition

      Vol:
    E97-D No:2
      Page(s):
    275-284

    This paper describes a novel method for the bi-directional transformation between the power consumption patterns of appliances and human living activities. We have been proposing a demand-side energy management system that aims to cut down the peak power consumption and save the electric energy in a household while keeping user's quality of life based on the plan of electricity use and the dynamic priorities of the appliances. The plan of electricity use could be established in advance by predicting appliance power consumption. Regarding the priority of each appliance, it changes according to user's daily living activities, such as cooking, bathing, or entertainment. To evaluate real-time appliance priorities, real-time living activity estimation is needed. In this paper, we address the problem of the bi-directional transformation between personal living activities and power consumption patterns of appliances. We assume that personal living activities and appliance power consumption patterns are related via the following two elements: personal appliance usage patterns, and the location of people. We first propose a Living Activity - Power Consumption Model as a generative model to represent the relationship between living activities and appliance power consumption patterns, via the two elements. We then propose a method for the bidirectional transformation between living activities and appliance power consumption patterns on the model, including the estimation of personal living activities from measured appliance power consumption patterns, and the generation of appliance power consumption patterns from given living activities. Experiments conducted on real daily life demonstrate that our method can estimate living activities that are almost consistent with the real ones. We also confirm through case study that our method is applicable for simulating appliance power consumption patterns. Our contributions in this paper would be effective in saving electric energy, and may be applied to remotely monitor the daily living of older people.

321-340hit(867hit)