The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ERG(867hit)

461-480hit(867hit)

  • An Energy Efficiency 4-bit Multiplier with Two-Phase Non-overlap Clock Driven Charge Recovery Logic

    Yimeng ZHANG  Leona OKAMURA  Tsutomu YOSHIHARA  

     
    PAPER

      Vol:
    E94-C No:4
      Page(s):
    605-612

    A novel charge-recovery logic structure called Pulse Boost Logic (PBL) is proposed in this paper. PBL is a high-speed low-energy-dissipation charge-recovery logic with dual-rail evaluation tree structure. It is driven by 2-phase non-overlap clock, and requires no DC power supply. PBL belongs to boost logic family, which includes boost logic, enhanced boost logic and subthreshold boost logic. In this paper, PBL has been compared with other charge-recovery logic technologies. To demonstrate the performance of PBL structure, a 4-bit pipeline multiplier is designed and fabricated with 0.18 µm CMOS process technology. The simulation results indicate that the 4-bit multiplier can work at a frequency of 1.8 GHz, while the measurement of test chip is at operation frequency of 161 MHz, and the power dissipation at 161 MHz is 772 µW.

  • An Association Rule Based Grid Resource Discovery Method

    Yuan LIN  Siwei LUO  Guohao LU  Zhe WANG  

     
    LETTER-Computer System

      Vol:
    E94-D No:4
      Page(s):
    913-916

    There are a great amount of various resources described in many different ways for service oriented grid environment, while traditional grid resource discovery methods could not fit more complex future grid system. Therefore, this paper proposes a novel grid resource discovery method based on association rule hypergraph partitioning algorithm which analyzes user behavior in history transaction records to provide personality service for user. And this resource discovery method gives a new way to improve resource retrieval and management in grid research.

  • Regulation of Parallel Converters with Respect to Stored Energy and Passivity Characteristics

    Takashi HIKIHARA  Yuzo MURAKAMI  

     
    LETTER-Nonlinear Problems

      Vol:
    E94-A No:3
      Page(s):
    1010-1014

    A regulation of converters connected in parallel is discussed considering their stored energy and passivity characteristics. From the viewpoint of stored energy, a new regulation method to conserve and share the stored energy can be found. The energy stored in inductors and capacitors is transferred to loads so that the load keeps the energy dissipation constant. Though numerical simulation, the method is validated for a parallel converter system.

  • Distributed Ad Hoc Cooperative Routing in Cluster-Based Multihop Networks

    I-Te LIN  Iwao SASASE  

     
    PAPER-Network

      Vol:
    E94-B No:2
      Page(s):
    444-454

    Ad Hoc Routing (AHR) was proposed to replace optimal routing in cluster-based multihop networks since it offers lower implementation complexity. However, this complexity reduction comes at the cost of an increase in the required transmission power. In addition, when the conventional distributed relay selection is applied to implement AHR, another increase in the required transmission power occurs due to the receiver selection error. In this paper, Ad Hoc Cooperative Routing (AHCR) that integrates the cooperative transmission with AHR is presented to reduce the difference between the required transmission power of AHR and that of optimal routing. Besides, Distributed Ad Hoc Cooperative Routing (DAHCR) scheme 1 that combines the cooperative transmission with AHR is proposed to reduce the difference between the required transmission power of DAHR and that of AHR. We then address the problem of DAHCR scheme 1 and propose DAHCR scheme 2. Simulation results show that the required transmission power of AHCR and DAHCR scheme 1 is less than that of AHR and DAHR, respectively. In addition, DAHCR scheme 2 further reduces the required transmission power of DAHCR scheme 1. On the other hand, DAHCR scheme 1 increases the complexity by 43% compared to DAHR. Besides, DAHCR scheme 2 increases the complexity by 1.97% compared to DAHCR scheme 1.

  • Energy-Saving Stochastic Scheduling of a Real-Time Parallel Task with Varying Computation Amount on Multi-Core Processors

    Wan Yeon LEE  Kyong Hoon KIM  

     
    LETTER-Systems and Control

      Vol:
    E94-A No:2
      Page(s):
    842-845

    The proposed scheduling scheme minimizes the mean energy consumption of a real-time parallel task, where the task has the probabilistic computation amount and can be executed concurrently on multiple cores. The scheme determines a pertinent number of cores allocated to the task execution and the instant frequency supplied to the allocated cores. Evaluation shows that the scheme saves manifest amount of the energy consumed by the previous method minimizing the mean energy consumption on a single core.

  • HDAR: Highly Distributed Adaptive Service Replication for MANETs

    Asaad AHMED  Keiichi YASUMOTO  Minoru ITO  Naoki SHIBATA  Tomoya KITANI  

     
    PAPER-Information Network

      Vol:
    E94-D No:1
      Page(s):
    91-103

    Mobile Ad Hoc Networks (MANETs) offer quick and easy network deployment in situations where it is not possible otherwise and they can be used to provide mobile users with a temporary infrastructure to use services in the absence of fixed infrastructure. Nodes in MANETs are free to move and organize themselves in an arbitrary fashion. The challenging task in such dynamic environments is how to improve the service availability. Replicating a service at some nodes distributed across the network is an effective strategy. However, service replication can considerably impact the system energy consumption. Since mobile devices have limited battery resources, a dynamic and efficient service replication is necessary to support such environments. In this paper, we propose a distributed service replication scheme for achieving high service availability with reasonable energy consumption for MANETs. The proposed method called HDAR (Highly Distributed Adaptive Service Replication) divides the whole network into disjoint zones of at most 2-hops in diameter and builds a dynamic replication mechanism which selects new replica zones depending on their service demand and the tradeoff between the communication and replication energy consumption costs. Through simulations, we confirmed that our approach can achieve higher service availability with reasonable energy consumption than existing methods.

  • Autonomous Community Construction and Reconstruction Technology for Emergency Management

    Fan WEI  Xiaodong LU  Kinji MORI  

     
    PAPER-Community

      Vol:
    E94-B No:1
      Page(s):
    10-17

    Wireless Sensor Network(WSN) is widely used in Emergency Management System(EMS) to assure high safety. Real-timely transmitting emergency information in dynamically changing environment should be assured in mission critical district. Conventional methods based on static situations and centralized approaches can not satisfy this requirement. In this paper, to assure real-time property, autonomous community construction technology is proposed to set special area called community which includes a special passage composed of several routers for emergency information's transmission and routers around this passage in one hop range. Emergency information's transmission is protected by routers around this passage from interference of other sensing information's transmission in and outside community. Moreover, autonomous community reconstruction technology is proposed to guarantee real-time property at failure conditions. In this technology, community members autonomously cooperate and coordinate with each other to setup a bypass in community for transmitting emergency information if fault happens. Evaluation results indicate effectiveness of proposed technology.

  • An Online Network Price Control Scheme by Using Stackelberg Game Model

    Sungwook KIM  

     
    LETTER-Network

      Vol:
    E94-B No:1
      Page(s):
    322-325

    In this paper, a new adaptive online price control scheme is formalized based on the Stackelberg game model. To provide the most desirable network performance, the proposed scheme consists of two different control mechanisms; user-based and operator-based mechanisms. By using the hierarchical interaction strategy, control decisions in each mechanism act cooperatively and collaborate with each other to satisfy conflicting performance criteria. With a simulation study, the proposed scheme can adaptively adjust the network price to approximate an optimized solution under widely diverse network situations.

  • Performance Analysis of Opportunistic-Based Two-Way Relaying with Beamforming over Nakagami-m Fading Channels

    Jianxiong HUANG  Taiyi ZHANG  Runping YUAN  Jing ZHANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:1
      Page(s):
    359-363

    In this letter, the performance of opportunistic-based two-way relaying with beamforming over Nakagami-m fading channels is investigated. We provide an approximate expression for the cumulative distribution function of the end-to-end signal-to-noise ratio to derive the closed-form lower bounds for the outage probability and average bit error probability as well as the closed-form upper bound for the ergodic capacity. Simulation results demonstrate the tightness of the derived bounds.

  • A Method of Cognizing Primary and Secondary Radio Signals

    Satoshi TAKAHASHI  

     
    PAPER

      Vol:
    E93-A No:12
      Page(s):
    2682-2690

    A cognitive radio will have to sense and discover the spectral environments where it would not cause primary radios to interfere. Because the primary radios have the right to use the frequency, the cognitive radios as the secondary radios must detect radio signals before use. However, the secondary radios also need identifying the primary and other secondary radios where the primary radios are vulnerable to interference. In this paper, a method of simultaneously identifying signals of primary and secondary radios is proposed. The proposed bandwidth differentiation assumes the primary and secondary radios use orthogonal frequency division multiplexing (OFDM), and the secondary radios use at the lower number of subcarriers than the primary radios. The false alarm and detection probabilities are analytically evaluated using the characteristic function method. Numerical evaluations are also conducted on the assumption the primary radio is digital terrestrial television broadcasting. Result showed the proposed method could achieve the false alarm probability of 0.1 and the detection probability of 0.9 where the primary and secondary radio powers were 2.5 dB and 3.6 dB higher than the noise power. In the evaluation, the reception signals were averaged over the successive 32 snapshots, and the both the primary and secondary radios used QPSK. The power ratios were 4.7 dB and 8.4 dB where both the primary and secondary radios used 64QAM.

  • Logical Position Exchange Algorithm for Efficient Management in ZigBee Tree Networks

    Saeyoung AHN  Sunshin AN  

     
    LETTER

      Vol:
    E93-B No:12
      Page(s):
    3526-3529

    Currently, there are various routing methods that consider the energy in a wireless sensor environment. The algorithm we consider is a low-rate wireless personal area network, viz., 802.15.4, and ZigBee routing network. Considering, the overall organization of the network energy efficiency, we suggest a logical position exchange (LPE) algorithm between specified nodes. Logical positioning means connecting high sub-networks and low sub-networks based on the neighbor nodes information of the address ID, and depth in the ZigBee tree topology network. When one of the nodes of the tree topology network, which is responsible for connecting multiple low sub-networks and high sub-networks, has difficulty performing its important roles in the network, because of energy exhaustion, it exchanges essential information and entrusts logical positioning to another node that is capable of it. A partial change in the logical topology enhances the energy efficiency in the network.

  • Enhanced Media Access Scheme for Distributed Spectrum Sensing

    Yohannes D. ALEMSEGED  Chen SUN  Ha NGUYEN TRAN  Hiroshi HARADA  

     
    PAPER

      Vol:
    E93-B No:12
      Page(s):
    3266-3273

    In distributed spectrum sensing, spatially distributed sensors perform radio frequency (RF) sensing and forward the result to a fusion center (FC). Cognitive radio (CR) obtains spectral information from the FC. Distributed spectrum sensing facilitates reliable discovery of spectrum opportunity while providing enhanced protection to legacy systems. The overall performance of distributed spectrum sensing depends both on the quality of sensing at the individual sensors and the forwarding scheme from the individual sensors. In this aspect the choice of media access control (MAC) plays a significant role. We can improve the system performance by optimizing the MAC and the spectrum sensing parameters jointly. In this paper we propose an enhanced MAC scheme based on existing scheduled MAC protocols to yield a high performance distributed spectrum sensing. To demonstrate our idea, we provide computer simulation by considering energy detection based distributed spectrum sensors and IEEE 802.15.4 PHY and MAC parameters.

  • A Lightweight Routing Protocol for Mobile Target Detection in Wireless Sensor Networks

    Yu-Chen KUO  Wen-Tien YEH  Ching-Sung CHEN  Ching-Wen CHEN  

     
    PAPER-Network

      Vol:
    E93-B No:12
      Page(s):
    3591-3599

    The AODV routing protocol, which is simple and efficient, is often used in wireless sensor networks to transmit data. The AODV routing protocol constructs a path from the source node, which detects the target, to the sink node. Whenever the target moves, the path will be reconstructed and the RREQ packet will be broadcasted to flood the wireless sensor network. The localization repair routing protocol sets up a reconstruction area and restricts the broadcast of the RREQ packet to that area to avoid broadcast storm. However, this method cannot reconstruct the path once the target moves out of the reconstruction area. In this paper, we propose a lightweight routing protocol for mobile target detection. When the path breaks because of the movement of the target, the nodes can repair the path effectively using the presented routing information to achieve the lightweight effect.

  • Low-Complexity and Energy-Efficient Algorithms on Image Compression for Wireless Sensor Networks

    Phat NGUYEN HUU  Vinh TRAN-QUANG  Takumi MIYOSHI  

     
    PAPER

      Vol:
    E93-B No:12
      Page(s):
    3438-3447

    This paper proposes two algorithms to balance energy consumption among sensor nodes by distributing the workload of image compression tasks within a cluster on wireless sensor networks. The main point of the proposed algorithms is to adopt the energy threshold, which is used when we implement the exchange and/or assignment of tasks among sensor nodes. The threshold is well adaptive to the residual energy of sensor nodes, input image, compressed output, and network parameters. We apply the lapped transform technique, an extended version of the discrete cosine transform, and run length encoding before Lempel-Ziv-Welch coding to the proposed algorithms to improve both quality and compression rate in image compression scheme. We extensively conduct computational experiments to verify the our methods and find that the proposed algorithms achieve not only balancing the total energy consumption among sensor nodes and, thus, increasing the overall network lifetime, but also reducing block noise in image compression.

  • An Energy Saving Scheduling Scheme for OFDMA Two-Hop Relay Systems

    Yanan HUANG  Xuming FANG  Yue ZHAO  

     
    PAPER-Mobile Information Network and Personal Communications

      Vol:
    E93-A No:11
      Page(s):
    2320-2327

    Being a new feature of next generation of wireless networks, Mobile Multi-hop Relay (MMR) is proposed for the purpose of coverage extension and throughput enhancement in LTE-Advanced, IEEE 802.16 j/m. Besides, with the help of relay, the system energy consumption could be well saved. In this paper, an energy saving scheduling scheme is proposed for OFDMA based two-hop relay systems. The novel scheme adjusts the modulation and coding (MC) mode and allocates the transmit power dynamically according to the resource intensity. It can also guarantee the Quality of Service (QoS) of different services by setting the scheduling priority. The simulation results show that the novel scheduling scheme can reduce energy consumption up to 76.27% compared to the conventional scheduling scheme, and achieve higher throughput while guaranteeing QoS.

  • Performance and Energy Efficiency Tradeoffs of Storage Class Memory

    Heekwon PARK  Seungjae BAEK  Jongmoo CHOI  

     
    LETTER-Computer System

      Vol:
    E93-D No:11
      Page(s):
    3112-3115

    The traditional mobile consumer electronics such as media players and smart phones use two distinct memories, SDRAM and Flash memory. SDRAM is used as main memory since it has characteristic of byte-unit random accessibility while Flash memory as secondary storage due to its characteristic of non-volatility. However, the advent of Storage Class Memory (SCM) that supports both SDRAM and Flash memory characteristics gives an opportunity to design a new system configuration. In this paper, we explore four feasible system configurations, namely RAM-Flash, RAM-SCM, SCM-Flash and SCM-Only. Then, using a real embedded system equipped with FeRAM, a type of SCM, we analyze the tradeoffs between performance and energy efficiency of each configuration. Experimental results have shown that SCM has great potential to reduce energy consumption for all configurations while performance is highly application dependent and might be degraded on the SCM-Flash and SCM-Only configuration.

  • Characterization of Factor Graph by Mooij's Sufficient Condition for Convergence of the Sum-Product Algorithm

    Tomoharu SHIBUYA  

     
    LETTER-Coding Theory

      Vol:
    E93-A No:11
      Page(s):
    2083-2088

    Recently, Mooij et al. proposed new sufficient conditions for convergence of the sum-product algorithm, and it was also shown that if the factor graph is a tree, Mooij's sufficient condition for convergence is always activated. In this letter, we show that the converse of the above statement is also true under some assumption, and that the assumption holds for the sum-product decoding. These newly obtained fact implies that Mooij's sufficient condition for convergence of the sum-product decoding is activated if and only if the factor graph of the a posteriori probability of the transmitted codeword is a tree.

  • Autonomous Traffic Engineering for Boosting Application Fidelity in Wireless Sensor Networks

    Md. Abdur RAZZAQUE  Choong Seon HONG  Sungwon LEE  

     
    PAPER-Network

      Vol:
    E93-B No:11
      Page(s):
    2990-3003

    This paper presents an autonomous traffic engineering framework, named ATE, a highly efficient data dissemination mechanism for multipath data forwarding in Wireless Sensor Networks (WSNs). The proposed ATE has several salient features. First, ATE utilizes three coordinating schemes: an incipient congestion inference scheme, an accurate link quality estimation scheme and a dynamic traffic diversion scheme. It significantly minimizes packet drops due to congestion by dynamically and adaptively controlling the data traffic over congested nodes and/or poorer quality links, and by opportunistically exploiting under-utilized nodes for traffic diversion, while minimizing the estimation and measurement overhead. Second, ATE can provide with high application fidelity of the network even for increasing values of bit error rates and node failures. The proposed link quality estimation and congestion inference schemes are light weight and distributed, improving the energy efficiency of the network. Autonomous Traffic Engineering has been evaluated extensively via NS-2 simulations, and the results have shown that ATE provides a better performance with minimum overhead than those of existing approaches.

  • An Efficient Algorithm for Point Set Registration Using Analytic Differential Approach

    Ching-Chi CHEN  Wei-Yen HSU  Shih-Hsuan CHIU  Yung-Nien SUN  

     
    PAPER-Biological Engineering

      Vol:
    E93-D No:11
      Page(s):
    3100-3107

    Image registration is an important topic in medical image analysis. It is usually used in 2D mosaics to construct the whole image of a biological specimen or in 3D reconstruction to build up the structure of an examined specimen from a series of microscopic images. Nevertheless, owing to a variety of factors, including microscopic optics, mechanisms, sensors, and manipulation, there may be great differences between the acquired image slices even if they are adjacent. The common differences include the chromatic aberration as well as the geometry discrepancy that is caused by cuts, tears, folds, and deformation. They usually make the registration problem a difficult challenge to achieve. In this paper, we propose an efficient registration method, which consists of a feature-based registration approach based on analytic robust point matching (ARPM) and a refinement procedure of the feature-based Levenberg-Marquardt algorithm (FLM), to automatically reconstruct 3D vessels of the rat brains from a series of microscopic images. The registration algorithm could speedily evaluate the spatial correspondence and geometric transformation between two point sets with different sizes. In addition, to achieve subpixel accuracy, an FLM method is used to refine the registered results. Due to the nonlinear characteristic of FLM method, it converges much faster than most other methods. We evaluate the performance of proposed method by comparing it with well-known thin-plate spline robust point matching (TPS-RPM) algorithm. The results indicate that the ARPM algorithm together with the FLM method is not only a robust but efficient method in image registration.

  • A Study of Cooperative Human Probes in Urban Sensing Environments

    Niwat THEPVILOJANAPONG  Shin'ichi KONOMI  Yoshito TOBE  

     
    PAPER

      Vol:
    E93-B No:11
      Page(s):
    2868-2878

    Portable sensory devices such as sensors equipped mobile phones enable convenient sensing and monitoring of urban areas. Such devices, which are always carried by humans, are referred to as Human Probes. Instead of carrying out sensing activities independently, cooperation of Human Probes helps in realizing efficient urban sensing environments. In this paper, we propose an Architecture of Qualitative Urban Information Blending and Acquisition (Aquiba), in which the sensing activities are adjusted autonomously according to cooperation of Human Probes. Aquiba introduces a cooperative sensing approach which aims to maintain desired sensing resolution efficiently while minimizing overall energy consumption. To study the performance of Aquiba, we have conducted comprehensive simulations ranging from small- to large-scale scenarios along with applying three different movement patterns of human. The simulation results demonstrate that Aquiba is capable of providing high sensing resolution and reducing overall energy consumption.

461-480hit(867hit)