The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] FA(3430hit)

341-360hit(3430hit)

  • New Classes of Optimal Low Hit Zone Frequency Hopping Sequence Set with Large Family Size

    Long LING  Xianhua NIU  Bosen ZENG  Xing LIU  

     
    LETTER-Sequence

      Vol:
    E101-A No:12
      Page(s):
    2213-2216

    The construction of frequency hopping sequences with good Hamming correlation is the foundation of research in frequency hopping communication. In this letter, classes of optimal low hit zone frequency hopping sequence set are constructed based on the interleaving technology. The results of the study show that the sequence set with large family size is optimal for the Peng-Fan-Lee bound. And all the sequences in the set are inequivalent.

  • Optimal Families of Perfect Polyphase Sequences from Cubic Polynomials

    Min Kyu SONG  Hong-Yeop SONG  

     
    PAPER-Coding Theory

      Vol:
    E101-A No:12
      Page(s):
    2359-2365

    For an odd prime p and a positive integer k ≥ 2, we propose and analyze construction of perfect pk-ary sequences of period pk based on cubic polynomials over the integers modulo pk. The constructed perfect polyphase sequences from cubic polynomials is a subclass of the perfect polyphase sequences from the Mow's unified construction. And then, we give a general approach for constructing optimal families of perfect polyphase sequences with some properties of perfect polyphase sequences and their optimal families. By using this, we construct new optimal families of pk-ary perfect polyphase sequences of period pk. The constructed optimal families of perfect polyphase sequences are of size p-1.

  • Bit Labeling and Code Searches for BICM-ID Using 16-DAPSK

    Chun-Lin LIN  Tzu-Hsiang LIN  Ruey-Yi WEI  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2018/05/31
      Vol:
    E101-B No:12
      Page(s):
    2380-2387

    Bit-interleaved coded modulation with iterative decoding (BICM-ID) is suitable for correlated Rayleigh fading channels. Additionally, BICM-ID using differential encoding can avoid the pilot overhead. In this paper, we consider BICM-ID using 16-DAPSK (differential amplitude and phase-shift keying). We first derive the probability of receiving signals conditioned on the transmission of input bits for general differential encoding; then we propose two new 16-DAPSK bit labeling methods. In addition, convolutional codes for the new bit labeling are developed. Both the minimum distance and the simulation results show that the proposed labeling has better error performance than that of the original differential encoding, and the searched new codes can further improve the error performance.

  • Efficient Methods of Inactive Regions Padding for Segmented Sphere Projection (SSP) of 360 Video

    Yong-Uk YOON  Yong-Jo AHN  Donggyu SIM  Jae-Gon KIM  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2018/08/20
      Vol:
    E101-D No:11
      Page(s):
    2836-2839

    In this letter, methods of inactive regions padding for Segmented Sphere Projection (SSP) of 360 videos are proposed. A 360 video is projected onto a 2D plane to be coded with diverse projection formats. Some projection formats have inactive regions in the converted 2D plane such as SSP. The inactive regions may cause visual artifacts as well as coding efficiency decrease due to discontinuous boundaries between active and inactive regions. In this letter, to improve coding efficiency and reduce visual artifacts, the inactive regions are padded by using two types of adjacent pixels in either rectangular-face or circle-face boundaries. By padding the inactive regions with the highly correlated adjacent pixels, the discontinuities between active and inactive regions are reduced. The experimental results show that, in terms of end-to-end Weighted to Spherically uniform PSNR (WS-PSNR), the proposed methods achieve 0.3% BD-rate reduction over the existing padding method for SSP. In addition, the visual artifacts along the borders between discontinuous faces are noticeably reduced.

  • Single Image Haze Removal Using Hazy Particle Maps

    Geun-Jun KIM  Seungmin LEE  Bongsoon KANG  

     
    LETTER-Image

      Vol:
    E101-A No:11
      Page(s):
    1999-2002

    Hazes with various properties spread widely across flat areas with depth continuities and corner areas with depth discontinuities. Removing haze from a single hazy image is difficult due to its ill-posed nature. To solve this problem, this study proposes a modified hybrid median filter that performs a median filter to preserve the edges of flat areas and a hybrid median filter to preserve depth discontinuity corners. Recovered scene radiance, which is obtained by removing hazy particles, restores image visibility using adaptive nonlinear curves for dynamic range expansion. Using comparative studies and quantitative evaluations, this study shows that the proposed method achieves similar or better results than those of other state-of-the-art methods.

  • Air-Writing Recognition Based on Fusion Network for Learning Spatial and Temporal Features

    Buntueng YANA  Takao ONOYE  

     
    PAPER-Neural Networks and Bioengineering

      Vol:
    E101-A No:11
      Page(s):
    1737-1744

    A fusion framework between CNN and RNN is proposed dedicatedly for air-writing recognition. By modeling the air-writing using both spatial and temporal features, the proposed network can learn more information than existing techniques. Performance of the proposed network is evaluated by using the alphabet and numeric datasets in the public database namely the 6DMG. Average accuracy of the proposed fusion network outperforms other techniques, i.e. 99.25% and 99.83% are observed in the alphabet gesture and the numeric gesture, respectively. Simplified structure of RNN is also proposed, which can attain about two folds speed-up of ordinary BLSTM network. It is also confirmed that only the distance between consecutive sampling points is enough to attain high recognition performance.

  • Fostering Real-Time Software Analysis by Leveraging Heterogeneous and Autonomous Software Repositories

    Chaman WIJESIRIWARDANA  Prasad WIMALARATNE  

     
    PAPER-Software Engineering

      Pubricized:
    2018/08/06
      Vol:
    E101-D No:11
      Page(s):
    2730-2743

    Mining software repositories allow software practitioners to improve the quality of software systems and to support maintenance based on historical data. Such data is scattered across autonomous and heterogeneous information sources, such as version control, bug tracking and build automation systems. Despite having many tools to track and measure the data originated from such repositories, software practitioners often suffer from a scarcity of the techniques necessary to dynamically leverage software repositories to fulfill their complex information needs. For example, answering a question such as “What is the number of commits between two successful builds?” requires tiresome manual inspection of multiple repositories. As a solution, this paper presents a conceptual framework and a proof of concept visual query interface to satisfy distinct software quality related information needs of software practitioners. The data originated from repositories is integrated and analyzed to perform systematic investigations, which helps to uncover hidden relationships between software quality and trends of software evolution. This approach has several significant benefits such as the ability to perform real-time analyses, the ability to combine data from various software repositories and generate queries dynamically. The framework evaluated with 31 subjects by using a series of questions categorized into three software evolution scenarios. The evaluation results evidently show that our framework surpasses the state of the art tools in terms of correctness, time and usability.

  • Dynamic Channel Assignment with Consideration of Interference and Fairness for Dense Small-Cell Networks

    Se-Jin KIM  

     
    LETTER-Mobile Information Network and Personal Communications

      Vol:
    E101-A No:11
      Page(s):
    1984-1987

    This letter proposes a novel dynamic channel assignment (DCA) scheme with consideration of interference and fairness for the downlink of dense small-cell networks based on orthogonal frequency division multiple access-frequency division duplex. In the proposed scheme, a small-cell gateway fairly assigns subchannels to the small-cell user equipment (SUE) according to the co-tier interference from neighboring small-cell access points. From the simulation results, it is shown that the proposed DCA scheme outperforms other DCA schemes in terms of the fairness of each SUE capacity.

  • A Novel Supervised Bimodal Emotion Recognition Approach Based on Facial Expression and Body Gesture

    Jingjie YAN  Guanming LU  Xiaodong BAI  Haibo LI  Ning SUN  Ruiyu LIANG  

     
    LETTER-Image

      Vol:
    E101-A No:11
      Page(s):
    2003-2006

    In this letter, we propose a supervised bimodal emotion recognition approach based on two important human emotion modalities including facial expression and body gesture. A effectively supervised feature fusion algorithms named supervised multiset canonical correlation analysis (SMCCA) is presented to established the linear connection between three sets of matrices, which contain the feature matrix of two modalities and their concurrent category matrix. The test results in the bimodal emotion recognition of the FABO database show that the SMCCA algorithm can get better or considerable efficiency than unsupervised feature fusion algorithm covering canonical correlation analysis (CCA), sparse canonical correlation analysis (SCCA), multiset canonical correlation analysis (MCCA) and so on.

  • End-to-End Redundancy and Maintenance Condition Design for Nationwide Optical Transport Network

    Yoshihiko UEMATSU  Shohei KAMAMURA  Hiroshi YAMAMOTO  Aki FUKUDA  Rie HAYASHI  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Pubricized:
    2018/05/22
      Vol:
    E101-B No:11
      Page(s):
    2267-2276

    To achieve high end-to-end availability in nationwide optical transport network across thousands of office buildings, it is important to properly make each function redundant, and execute protection switching, repair failed functions and recover redundancy to prevent multiple simultaneous failures. High redundancy leads to high system cost and high power consumption, and tight conditions for recovery leads to high maintenance cost. Therefore it is important to optimize the balance between redundancy and maintenance condition based on appropriate availability indicators. We previously proposed a resource-pool control mechanism for a nationwide optical transport network that can optimize the balance. This paper proposes an end-to-end availability evaluation scheme for a nationwide optical transport network with our mechanism, by which network operators can design the pool-resource amount of each function and the maintenance conditions for each network area properly to satisfy the end-to-end availability requirement. Although the maintenance conditions are usually discussed based on failure-recovery times, they should be discussed based on cost- or load-based volumes for this design. This paper proposes a maintenance-operation-load evaluation scheme, which derives the required number of maintenance staff members from failure-recovery times. We also discuss the design of the pool-resource amount and maintenance conditions for each network area of a nationwide network based on the proposed evaluation schemes.

  • High Speed and Narrow-Bandpass Liquid Crystal Filter for Real-Time Multi Spectral Imaging Systems

    Kohei TERASHIMA  Kazuhiro WAKO  Yasuyuki FUJIHARA  Yusuke AOYAGI  Maasa MURATA  Yosei SHIBATA  Shigetoshi SUGAWA  Takahiro ISHINABE  Rihito KURODA  Hideo FUJIKAKE  

     
    BRIEF PAPER

      Vol:
    E101-C No:11
      Page(s):
    897-900

    We have developed the high speed bandpass liquid crystal filter with narrow full width at half maximum (FWHM) of 5nm for real-time multi spectral imaging systems. We have successfully achieved short wavelength-switching time of 30ms by the optimization of phase retardation of thin liquid crystal cells.

  • Strip-Switched Deployment Method to Optimize Single Failure Recovery for Erasure Coded Storage Systems

    Yingxun FU  Shilin WEN  Li MA  Jianyong DUAN  

     
    LETTER-Computer System

      Pubricized:
    2018/07/25
      Vol:
    E101-D No:11
      Page(s):
    2818-2822

    With the rapid growth on data scale and complexity, single disk failure recovery becomes very important for erasure coded storage systems. In this paper, we propose a new strip-switched deployment method, which utilizes the feature that strips of each stripe of erasure codes could be switched, and uses simulated annealing algorithm to search for the proper strip-deployment on the stack level to balance the read accesses, in order to improve the recovery performance. The analysis and experiments results show that SSDM could effectively improve the single failure recovery performance.

  • High-Speed Spelling in Virtual Reality with Sequential Hybrid BCIs

    Zhaolin YAO  Xinyao MA  Yijun WANG  Xu ZHANG  Ming LIU  Weihua PEI  Hongda CHEN  

     
    LETTER-Biological Engineering

      Pubricized:
    2018/07/25
      Vol:
    E101-D No:11
      Page(s):
    2859-2862

    A new hybrid brain-computer interface (BCI), which is based on sequential controls by eye tracking and steady-state visual evoked potentials (SSVEPs), has been proposed for high-speed spelling in virtual reality (VR) with a 40-target virtual keyboard. During target selection, gaze point was first detected by an eye-tracking accessory. A 4-target block was then selected for further target selection by a 4-class SSVEP BCI. The system can type at a speed of 1.25 character/sec in a cue-guided target selection task. Online experiments on three subjects achieved an averaged information transfer rate (ITR) of 360.7 bits/min.

  • Impact of Viewing Distance on Task Performance and Its Properties

    Makio ISHIHARA  Yukio ISHIHARA  

     
    LETTER-Human-computer Interaction

      Pubricized:
    2018/07/02
      Vol:
    E101-D No:10
      Page(s):
    2530-2533

    This paper discusses VDT syndrome from the point of view of the viewing distance between a computer screen and user's eyes. This paper conducts a series of experiments to show an impact of the viewing distance on task performance. In the experiments, two different viewing distances of 50cm and 350cm with the same viewing angle of 30degrees are taken into consideration. The results show that the long viewing distance enables people to manipulate the mouse more slowly, more correctly and more precisely than the short.

  • Ka-Band Branch Line Coupler Applied Hexagonal Waveguide Suitable for Additive Manufacturing

    Motomi ABE  Hidenori YUKAWA  Yu USHIJIMA  Takuma NISHIMURA  Takeshi OSHIMA  Takeshi YUASA  Naofumi YONEDA  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E101-C No:10
      Page(s):
    805-814

    A hexagonal waveguide branch line coupler suitable for additive manufacturing is proposed in this study, and its design method is elucidated. The additive manufactured Ka-band coupler exhibits characteristics similar to those of a machined coupler, but its weight and cost are reduced by 40% and 60%, respectively. Its effectiveness is also confirmed in this study.

  • User Satisfaction Constraint Adaptive Sleeping in 5G mmWave Heterogeneous Cellular Network

    Gia Khanh TRAN  Hidekazu SHIMODAIRA  Kei SAKAGUCHI  

     
    PAPER

      Pubricized:
    2018/04/13
      Vol:
    E101-B No:10
      Page(s):
    2120-2130

    Densification of mmWave smallcells overlaid on the conventional macro cell is considered to be an essential technology for enhanced mobile broadband services and future IoT applications requiring high data rate e.g. automated driving in 5G communication networks. Taking into account actual measurement mobile traffic data which reveal dynamicity in both time and space, this paper proposes a joint optimization of user association and smallcell base station (BS)'s ON/OFF status. The target is to improve the system's energy efficiency while guaranteeing user's satisfaction measured through e.g. delay tolerance. Numerical analyses are conducted to show the effectiveness of the proposed algorithm against dynamic traffic variation.

  • Composite Right-/Left-Handed Transmission Line Stub Resonators for X-Band Low Phase-Noise Oscillators

    Shinichi TANAKA  Hiroki NISHIZAWA  Kei TAKATA  

     
    PAPER

      Vol:
    E101-C No:10
      Page(s):
    734-743

    This paper describes a novel composite right-/left-handed (CRLH) transmission line (TL) stub resonator for X-band low phase-noise oscillator application. The bandpass filter type resonator composed only of microstrip components exhibits unloaded-Q exceeding that of microstrip-line resonators by engineering the dispersion relation for the CRLH TL. Two different types of stub resonator using identical and non-identical unit-cells are compared. Although the latter type was found to be superior to the former in terms of spurious frequency responses and the circuit size, care was taken to prevent the parasitic inductances distributed in the interdigital capacitors from impeding the Q-factor control capability of the resonator. The stub resonator thus optimized was applied to an 8.8-GHz SiGe HBT oscillator, which achieved a phase-noise of -134dBc/Hz at 1-MHz offset despite the modest dielectric loss tangent of the PCB laminate used as the substrate of the circuit.

  • Design and Analysis of First-Order Steerable Nonorthogonal Differential Microphone Arrays

    Qiang YU  Xiaoguang WU  Yaping BAO  

     
    LETTER-Engineering Acoustics

      Vol:
    E101-A No:10
      Page(s):
    1687-1692

    Differential microphone arrays have been widely used in hands-free communication systems because of their frequency-invariant beampatterns, high directivity factors and small apertures. Considering the position of acoustic source always moving within a certain range in real application, this letter proposes an approach to construct the steerable first-order differential beampattern by using four omnidirectional microphones arranged in a non-orthogonal circular geometry. The theoretical analysis and simulation results show beampattern constructed via this method achieves the same direction factor (DF) as traditional DMAs and higher white noise gain (WNG) within a certain angular range. The simulation results also show the proposed method applies to processing speech signal. In experiments, we show the effectiveness and small computation amount of the proposed method.

  • Projection Algorithm-Based Dynamic Surface Control of Dual-Motor Driving Servo System with Backlash Nonlinearity

    Haibo ZHAO  Chengguang WANG  

     
    PAPER-Systems and Control

      Vol:
    E101-A No:10
      Page(s):
    1646-1657

    Dual-motor driving servo systems are widely used in many military and civil fields. Since backlash nonlinearity affects the dynamic performance and steady-state tracking accuracy of these systems, it is necessary to study a control strategy to reduce its adverse effects. We first establish the state-space model of a system. To facilitate the design of the controller, we simplify the model based on the state-space model. Then, we design an adaptive controller combining a projection algorithm with dynamic surface control applied to a dual-motor driving servo system, which we believe to be the first, and analyze its stability. Simulation results show that projection algorithm-based dynamic surface control has smaller tracking error, faster tracking speed, and better robustness and stability than mere dynamic surface control. Finally, the experimental analysis validates the effectiveness of the proposed control algorithm.

  • Spectrum-Based Fault Localization Using Fault Triggering Model to Refine Fault Ranking List

    Yong WANG  Zhiqiu HUANG  Rongcun WANG  Qiao YU  

     
    PAPER-Software Engineering

      Pubricized:
    2018/07/04
      Vol:
    E101-D No:10
      Page(s):
    2436-2446

    Spectrum-based fault localization (SFL) is a lightweight approach, which aims at helping debuggers to identity root causes of failures by measuring suspiciousness for each program component being a fault, and generate a hypothetical fault ranking list. Although SFL techniques have been shown to be effective, the fault component in a buggy program cannot always be ranked at the top due to its complex fault triggering models. However, it is extremely difficult to model the complex triggering models for all buggy programs. To solve this issue, we propose two simple fault triggering models (RIPRα and RIPRβ), and a refinement technique to improve fault absolute ranking based on the two fault triggering models, through ruling out some higher ranked components according to its fault triggering model. Intuitively, our approach is effective if a fault component was ranked within top k in the two fault ranking lists outputted by the two fault localization strategies. Experimental results show that our approach can significantly improve the fault absolute ranking in the three cases.

341-360hit(3430hit)