The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] FA(3430hit)

421-440hit(3430hit)

  • Facial Expression Recognition via Regression-Based Robust Locality Preserving Projections

    Jingjie YAN  Bojie YAN  Ruiyu LIANG  Guanming LU  Haibo LI  Shipeng XIE  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2017/11/06
      Vol:
    E101-D No:2
      Page(s):
    564-567

    In this paper, we present a novel regression-based robust locality preserving projections (RRLPP) method to effectively deal with the issue of noise and occlusion in facial expression recognition. Similar to robust principal component analysis (RPCA) and robust regression (RR) approach, the basic idea of the presented RRLPP approach is also to lead in the low-rank term and the sparse term of facial expression image sample matrix to simultaneously overcome the shortcoming of the locality preserving projections (LPP) method and enhance the robustness of facial expression recognition. However, RRLPP is a nonlinear robust subspace method which can effectively describe the local structure of facial expression images. The test results on the Multi-PIE facial expression database indicate that the RRLPP method can effectively eliminate the noise and the occlusion problem of facial expression images, and it also can achieve better or comparative facial expression recognition rate compared to the non-robust and robust subspace methods meantime.

  • Capsule Antenna Design Based on Transmission Factor through the Human Body

    Yang LI  Hiroyasu SATO  Qiang CHEN  

     
    PAPER-Antennas

      Pubricized:
    2017/08/22
      Vol:
    E101-B No:2
      Page(s):
    357-363

    To design antennas for ingestible capsule endoscope systems, the transmission factors of dipole and loop antennas placed in the torso-shaped phantom filled with deionized water or human body equivalent liquid (HBEL) are investigated by numerical and experimental study. The S-parameter method is used to evaluate transmission characteristics through a torso-shaped phantom in a broadband frequency range. Good agreement of S-parameters between measured results and numerical analysis is observed and the transmission factors for both cases are obtained. Comparison of the transmission factors between HBEL and deionized water is presented to explain the relation between conductivity and the transmission characteristics. Two types of antennas, dipole antenna and loop antenna are compared. In the case of a dipole antenna placed in deionized water, it is observed that the transmission factor decreases as conductivity increases. On the other hand, there is a local maximum in the transmission factor at 675 MHz in the case of HBEL. This phenomenon is not observed in the case of a loop antenna. The transmission factor of capsule dipole antenna and capsule loop antenna are compared and the guideline in designing capsule antennas by using transmission factor is also proposed.

  • Painterly Morphing Effects for Mobile Smart Devices

    SungIk CHO  JungHyun HAN  

     
    LETTER-Computer Graphics

      Pubricized:
    2017/11/06
      Vol:
    E101-D No:2
      Page(s):
    568-571

    This paper proposes a painterly morphing algorithm for mobile smart devices, where each frame in the morphing sequence looks like an oil-painted picture with brush strokes. It can be presented, for example, during the transition between the main screen and a specific application screen. For this, a novel dissimilarity function and acceleration data structures are developed. The experimental results show that the algorithm produces visually stunning effects at an interactive time.

  • A Waffle-Iron Ridge Guide with Combined Fast- and Slow-Wave Modes for Array Antenna Applications

    Hideki KIRINO  Kazuhiro HONDA  Kun LI  Koichi OGAWA  

     
    PAPER-Antennas

      Pubricized:
    2017/08/22
      Vol:
    E101-B No:2
      Page(s):
    349-356

    A new Waffle-iron Ridge Guide (WRG) structure that has the ability to control both wavelength and impedance is proposed. With the proposed structure, not only can the wavelength be controlled over a wide range for both fast- and slow-waves in free space but the impedance can also be controlled. These features can improve the performance of array antennas in terms of reducing grating lobes and side lobes. In this paper, we discuss and evaluate a design scheme using equivalent circuits and EM-simulation. This paper also discusses how the conductivity and dielectric loss in the WRG affect the total gain of the array antenna.

  • Optimal Transmission Policy in Decoupled RF Energy Harvesting Networks

    Yu Min HWANG  Jun Hee JUNG  Yoan SHIN  Jin Young KIM  Dong In KIM  

     
    LETTER-Digital Signal Processing

      Vol:
    E101-A No:2
      Page(s):
    516-520

    In this letter, we study a scenario based on decoupled RF energy harvesting networks (DRF-EHNs) that separate energy sources from information sources to overcome the doubly near-far problem and improve harvesting efficiency. We propose an algorithm to maximize energy efficiency (EE) while satisfying constraints on the maximum transmit power of the hybrid access point (H-AP) and power beacon (PB), while further satisfying constraints on the minimum quality of service and minimum amount of harvested power in multi-user Rayleigh fading channel. Using nonlinear fractional programming and Lagrangian dual decomposition, we optimize EE with four optimization arguments: the transmit power from the H-AP and PB, time-splitting ratio, and power-splitting ratio. Numerical results show that the proposed algorithm is more energy-efficient compared to baseline schemes.

  • A Fuzzy Rule-Based Key Redistribution Method for Improving Security in Wireless Sensor Networks

    Jae Kwan LEE  Tae Ho CHO  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2017/07/27
      Vol:
    E101-B No:2
      Page(s):
    489-499

    Wireless Sensor Networks (WSNs) are randomly deployed in a hostile environment and left unattended. These networks are composed of small auto mouse sensor devices which can monitor target information and send it to the Base Station (BS) for action. The sensor nodes can easily be compromised by an adversary and the compromised nodes can be used to inject false vote or false report attacks. To counter these two kinds of attacks, the Probabilistic Voting-based Filtering Scheme (PVFS) was proposed by Li and Wu, which consists of three phases; 1) Key Initialization and assignment, 2) Report generation, and 3) En-route filtering. This scheme can be a successful countermeasure against these attacks, however, when one or more nodes are compromised, the re-distribution of keys is not handled. Therefore, after a sensor node or Cluster Head (CH) is compromised, the detection power and effectiveness of PVFS is reduced. This also results in adverse effects on the sensor network's lifetime. In this paper, we propose a Fuzzy Rule-based Key Redistribution Method (FRKM) to address the limitations of the PVFS. The experimental results confirm the effectiveness of the proposed method by improving the detection power by up to 13.75% when the key-redistribution period is not fixed. Moreover, the proposed method achieves an energy improvement of up to 9.2% over PVFS.

  • Comprehensive Analysis of the Impact of TWDP Fading on the Achievable Error Rate Performance of BPSK Signaling

    Donggu KIM  Hoojin LEE  Joonhyuk KANG  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2017/08/22
      Vol:
    E101-B No:2
      Page(s):
    500-507

    To effectively analyze the influence of two-wave with diffuse power (TWDP) fading on the achievable error rate performance of binary phase-shift keying (BPSK) signaling, we derive two novel concise asymptotic closed-form bit error rate (BER) formulas. We perform asymptotic analysese based on existing exact and approximate BER formulas, which are obtained from the exact probability density function (PDF) or moment generating function (MGF), and the approximate PDF of TWDP fading. The derived asymptotic closed-form expressions yield explicit insights into the achievable error rate performance in TWDP fading environments. Furthermore, the absolute relative error (ARE) between the exact and approximate coding gains is investigated, from which we also propose a criterion for the order of an approximate PDF, which is more robust than the conventional criterion. Numerical results clearly demonstrate the accuracy of the derived asymptotic formulas, and also support our proposed criterion.

  • Three Dimensional FPGA Architecture with Fewer TSVs

    Motoki AMAGASAKI  Masato IKEBE  Qian ZHAO  Masahiro IIDA  Toshinori SUEYOSHI  

     
    PAPER-Device and Architecture

      Pubricized:
    2017/11/17
      Vol:
    E101-D No:2
      Page(s):
    278-287

    Three-dimensional (3D) field-programmable gate arrays (FPGAs) are expected to offer higher logic density as well as improved delay and power performance by utilizing 3D integrated circuit technology. However, because through-silicon-vias (TSVs) for conventional 3D FPGA interlayer connections have a large area overhead, there is an inherent tradeoff between connectivity and small size. To find a balance between cost and performance, and to explore 3D FPGAs with realistic 3D integration processes, we propose two types of 3D FPGA and construct design tool sets for architecture exploration. In previous research, we created a TSV-free 3D FPGA with a face-down integration method; however, this was limited to two layers. In this paper, we discuss the face-up stacking of several face-down stacked FPGAs. To minimize the number of TSVs, we placed TSVs peripheral to the FPGAs for 3D-FPGA with 4 layers. According to our results, a 2-layer 3D FPGA has reasonable performance when limiting the design to two layers, but a 4-layer 3D FPGA is a better choice when area is emphasized.

  • A Simple and Effective Generalization of Exponential Matrix Discriminant Analysis and Its Application to Face Recognition

    Ruisheng RAN  Bin FANG  Xuegang WU  Shougui ZHANG  

     
    LETTER-Pattern Recognition

      Pubricized:
    2017/10/18
      Vol:
    E101-D No:1
      Page(s):
    265-268

    As an effective method, exponential discriminant analysis (EDA) has been proposed and widely used to solve the so-called small-sample-size (SSS) problem. In this paper, a simple and effective generalization of EDA is presented and named as GEDA. In GEDA, a general exponential function, where the base of exponential function is larger than the Euler number, is used. Due to the property of general exponential function, the distance between samples belonging to different classes is larger than that of EDA, and then the discrimination property is largely emphasized. The experiment results on the Extended Yale and CMU-PIE face databases show that, GEDA gets more advantageous recognition performance compared to EDA.

  • BiometricJammer: Method to Prevent Acquisition of Biometric Information by Surreptitious Photography on Fingerprints Open Access

    Isao ECHIZEN  Tateo OGANE  

     
    INVITED PAPER

      Pubricized:
    2017/10/16
      Vol:
    E101-D No:1
      Page(s):
    2-12

    Advances in fingerprint authentication technology have led to it being used in a growing range of personal devices such as PCs and smartphones. However, they have also made it possible to capture fingerprints remotely with a digital camera, putting the target person at risk of illegal log-ins and identity theft. This article shows how fingerprint captured in this manner can be authenticated and how people can protect their fingerprints against surreptitious photography. First we show that photographed fingerprints have enough information to spoof fingerprint authentication systems by demonstrating with “fake fingers” made from such photographs. Then we present a method that defeats the use of surreptitious photography without preventing the use of legitimate fingerprint authentication devices. Finally, we demonstrate that an implementation of the proposed method called “BiometricJammer,” a wearable device put on a fingertip, can effectively prevent the illegal acquisition of fingerprints by surreptitious photography while still enabling contact-based fingerprint sensors to respond normally.

  • Simplified Vehicle Vibration Modeling for Image Sensor Communication

    Masayuki KINOSHITA  Takaya YAMAZATO  Hiraku OKADA  Toshiaki FUJII  Shintaro ARAI  Tomohiro YENDO  Koji KAMAKURA  

     
    PAPER

      Vol:
    E101-A No:1
      Page(s):
    176-184

    Image sensor communication (ISC), derived from visible light communication (VLC) is an attractive solution for outdoor mobile environments, particularly for intelligent transport systems (ITS). In ITS-ISC, tracking a transmitter in the image plane is critical issue since vehicle vibrations make it difficult to selsct the correct pixels for data reception. Our goal in this study is to develop a precise tracking method. To accomplish this, vehicle vibration modeling and its parameters estimation, i.e., represetative frequencies and their amplitudes for inherent vehicle vibration, and the variance of the Gaussian random process represnting road surface irregularity, are required. In this paper, we measured actual vehicle vibration in a driving situation and determined parameters based on the frequency characteristics. Then, we demonstrate that vehicle vibration that induces transmitter displacement in an image plane can be modeled by only Gaussian random processes that represent road surface irregularity when a high frame rate (e.g., 1000fps) image sensor is used as an ISC receiver. The simplified vehicle vibration model and its parameters are evaluated by numerical analysis and experimental measurement and obtained result shows that the proposed model can reproduce the characteristics of the transmitter displacement sufficiently.

  • Green's Function and Radiation over a Periodic Surface: Reciprocity and Reversal Green's Function

    Junichi NAKAYAMA  Yasuhiko TAMURA  

     
    PAPER-Electromagnetic Theory

      Vol:
    E101-C No:1
      Page(s):
    3-11

    This paper deals with the scattering of a cylindrical wave by a perfectly conductive periodic surface. This problem is equivalent to finding the Green's function G(x,z|xs,zs), where (x,z) and (xs,zs) are the observation and radiation source positions above the periodic surface, respectively. It is widely known that the Green's function satisfies the reciprocity: G(x,z|xs,zs)=G(xs,zs|x,z), where G(xs,zs|x,z) is named the reversal Green's function in this paper. So far, there is no numerical method to synthesize the Green's function with the reciprocal property in the grating theory. By combining the shadow theory, the reciprocity theorem for scattering factors and the average filter introduced previously, this paper gives a new numerical method to synthesize the Green's function with reciprocal property. The reciprocity means that any properties of the Green's function can be obtained from the reversal Green's function. Taking this fact, this paper obtains several new formulae on the radiation and scattering from the reversal Green's function, such as a spectral representation of the Green's function, an asymptotic expression of the Green's function in the far region, the angular distribution of radiation power, the total power of radiation and the relative error of power balance. These formulae are simple and easy to use. Numerical examples are given for a very rough periodic surface. Several properties of the radiation and scattering are calculated for a transverse magnetic (TM) case and illustrated in figures.

  • Generating Pairing-Friendly Elliptic Curves Using Parameterized Families

    Meng ZHANG  Maozhi XU  

     
    LETTER-Cryptography and Information Security

      Vol:
    E101-A No:1
      Page(s):
    279-282

    A new method is proposed for the construction of pairing-friendly elliptic curves. For any fixed embedding degree, it can transform the problem to solving equation systems instead of exhaustive searching, thus it's more targeted and efficient. Via this method, we obtain various families including complete families, complete families with variable discriminant and sparse families. Specifically, we generate a complete family with important application prospects which has never been given before as far as we know.

  • Relay-Assisted Load Balancing Scheme Based on Practical Throughput Estimation

    Won-Tae YU  Jeongsik CHOI  Woong-Hee LEE  Seong-Cheol KIM  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/07/03
      Vol:
    E101-B No:1
      Page(s):
    242-252

    In cellular network environments, where users are not evenly distributed across cells, overloaded base stations handling many users have difficulties in providing effective and fair services with their limited resources. Additionally, users at the cell edge may suffer from the potential problems resulting from low signal-to-interference ratio owing to the incessant interference from adjacent cells. In this paper, we propose a relay-assisted load balancing scheme to resolve these traffic imbalance. The proposed scheme can improve the performance of the overall network by utilizing relay stations to divert heavy traffic to other cells, and by adopting a partial frequency-reuse scheme to mitigate inter-cell interference. Each user and relay station calculates its own utility influence in the neighboring candidates for reassociation and decides whether to stay or move to another cell presenting the maximum total network utility increment. Simulation results show that the proposed scheme improves the overall network fairness to users by improving the performance of cell boundary users without degrading the total network throughput. We achieve a system performance gain of 16 ∼ 35% when compared with conventional schemes, while ensuring fairness among users.

  • A Fast Computation Technique on the Method of Image Green's Function by a Spectral Domain Periodicity

    Yasuhiko TAMURA  

     
    PAPER-Electromagnetic Theory

      Vol:
    E101-C No:1
      Page(s):
    56-64

    This paper newly proposes a fast computation technique on the method of image Green's function for p-characteristic calculations, when a plane wave with the transverse wavenumber p is incident on a periodic rough surface having perfect conductivity. In the computation of p-characteristics, based on a spectral domain periodicity of the periodic image Green's function, the image integral equation for a given incidence p maintains the same form for other particular incidences except for the excitation term. By means of a quadrature method, such image integral equations lead to matrix equations. Once the first given matrix equation is performed by a solution procedure as calculations of its matrix elements and its inverse matrix, the other matrix equations for other particular incidences no longer need such a solution procedure. Thus, the total CPU time for the computation of p-characteristics is largely reduced in complex shaped surface cases, huge roughness cases or large period cases.

  • Design Considerations on Power, Performance, Reliability and Yield in 3D NAND Technology

    Toru TANZAWA  

     
    PAPER-Electronic Circuits

      Vol:
    E101-C No:1
      Page(s):
    78-81

    This paper discusses design challenges and possible solutions for 3D NAND. A 3D NAND array inherently has a larger parasitic capacitance and thereby critical area in terms of product yield. To mitigate such issues associated with 3D NAND technology, array control and divided array architecture for improving reliability and yield and for reducing area overhead, program time, energy per bit and array noise are proposed.

  • Image Pattern Similarity Index and Its Application to Task-Specific Transfer Learning

    Jun WANG  Guoqing WANG  Leida LI  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2017/08/31
      Vol:
    E100-D No:12
      Page(s):
    3032-3035

    A quantized index for evaluating the pattern similarity of two different datasets is designed by calculating the number of correlated dictionary atoms. Guided by this theory, task-specific biometric recognition model transferred from state-of-the-art DNN models is realized for both face and vein recognition.

  • Low Cost and Fault Tolerant Parallel Computing Using Stochastic Two-Dimensional Finite State Machine

    Xuechun WANG  Yuan JI  Wendong CHEN  Feng RAN  Aiying GUO  

     
    LETTER-Architecture

      Pubricized:
    2017/07/18
      Vol:
    E100-D No:12
      Page(s):
    2866-2870

    Hardware implementation of neural networks usually have high computational complexity that increase exponentially with the size of a circuit, leading to more uncertain and unreliable circuit performance. This letter presents a novel Radial Basis Function (RBF) neural network based on parallel fault tolerant stochastic computing, in which number is converted from deterministic domain to probabilistic domain. The Gaussian RBF for middle layer neuron is implemented using stochastic structure that reduce the hardware resources significantly. Our experimental results from two pattern recognition tests (the Thomas gestures and the MIT faces) show that the stochastic design is capable to maintain equivalent performance when the stream length set to 10Kbits. The stochastic hidden neuron uses only 1.2% hardware resource compared with the CORDIC algorithm. Furthermore, the proposed algorithm is very flexible in design tradeoff between computing accuracy, power consumption and chip area.

  • Efficient Aging-Aware Failure Probability Estimation Using Augmented Reliability and Subset Simulation

    Hiromitsu AWANO  Takashi SATO  

     
    PAPER

      Vol:
    E100-A No:12
      Page(s):
    2807-2815

    A circuit-aging simulation that efficiently calculates temporal change of rare circuit-failure probability is proposed. While conventional methods required a long computational time due to the necessity of conducting separate calculations of failure probability at each device age, the proposed Monte Carlo based method requires to run only a single set of simulation. By applying the augmented reliability and subset simulation framework, the change of failure probability along the lifetime of the device can be evaluated through the analysis of the Monte Carlo samples. Combined with the two-step sample generation technique, the proposed method reduces the computational time to about 1/6 of that of the conventional method while maintaining a sufficient estimation accuracy.

  • Discrimination of a Resistive Open Using Anomaly Detection of Delay Variation Induced by Transitions on Adjacent Lines

    Hiroyuki YOTSUYANAGI  Kotaro ISE  Masaki HASHIZUME  Yoshinobu HIGAMI  Hiroshi TAKAHASHI  

     
    PAPER

      Vol:
    E100-A No:12
      Page(s):
    2842-2850

    Small delay caused by a resistive open is difficult to test since circuit delay varies depending on various factors such as process variations and crosstalk even in fault-free circuits. We consider the problem of discriminating a resistive open by anomaly detection using delay distributions obtained by the effect of various input signals provided to adjacent lines. We examined the circuit delay in a fault-free circuit and a faulty circuit by applying electromagnetic simulator and circuit simulator for a line structure with adjacent lines under consideration of process variations. The effectiveness of the method that discriminates a resistive open is shown for the results obtained by the simulation.

421-440hit(3430hit)