The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] IMM(141hit)

41-60hit(141hit)

  • Evaluation of SRAM-Core Susceptibility against Power Supply Voltage Variation

    Takuya SAWADA  Taku TOSHIKAWA  Kumpei YOSHIKAWA  Hidehiro TAKATA  Koji NII  Makoto NAGATA  

     
    PAPER

      Vol:
    E95-C No:4
      Page(s):
    586-593

    The susceptibility of a static random access memory (SRAM) core against static and dynamic variation of power supply voltage is evaluated, by using on-chip diagnosis structures of memory built-in self testing (MBIST) and on-chip voltage waveform monitoring (OCM). The SRAM core of interest in this paper is a synthesizable version applicable to general systems-on-a-chip (SoC) design, and fabricated in a 90 nm CMOS technology. RF power injection to power supply networks is quantified by OCM. The number of resultant erroneous bits as well as their distribution in the cell array is given by MBIST. The frequency-dependent sensitivity reflects the highly capacitive nature of densely integrated SRAM cells.

  • Wavelength Trimming of Micro-Machined VCSELs

    Hayato SANO  Norihiko NAKATA  Akihiro MATSUTANI  Fumio KOYAMA  

     
    PAPER

      Vol:
    E95-C No:2
      Page(s):
    237-242

    We demonstrate the wavelength trimming of MEMS VCSELs by etching a cantilever-shaped top mirror using FIB etching. The proposed technique can be used for the post-process precise wavelength allocation of athermal MEMS VCSELs. The modeling and experimental results on 850 nm MEMS VCSELs are presented. The results show a possibility of realizing both red-shift and blue-shift wavelength changes by choosing the etching area of the cantilever.

  • Study on Network Vulnerability Identification and Equilibrated Network Immunization Strategy

    Chi GUO  Li-na WANG  Xiao-ying ZHANG  

     
    PAPER-Trust

      Vol:
    E95-D No:1
      Page(s):
    46-55

    Network structure has a great impact both on hazard spread and network immunization. The vulnerability of the network node is associated with each other, assortative or disassortative. Firstly, an algorithm for vulnerability relevance clustering is proposed to show that the vulnerability community phenomenon is obviously existent in complex networks. On this basis, next, a new indicator called network “hyper-betweenness” is given for evaluating the vulnerability of network node. Network hyper-betweenness can reflect the importance of network node in hazard spread better. Finally, the dynamic stochastic process of hazard spread is simulated based on Monte-Carlo sampling method and a two-player, non-cooperative, constant-sum game model is designed to obtain an equilibrated network immunization strategy.

  • A Class of 1-Resilient Functions in Odd Variables with High Nonlinearity and Suboptimal Algebraic Immunity

    Yusong DU  Fangguo ZHANG  

     
    LETTER-Cryptography and Information Security

      Vol:
    E95-A No:1
      Page(s):
    417-420

    Based on Tu-Deng's conjecture and the Tu-Deng function, in 2010, X. Tang et al. proposed a class of Boolean functions in even variables with optimal algebraic degree, very high nonlinearity and optimal algebraic immunity. In this corresponding, we consider the concatenation of Tang's function and another Boolean function, and study its cryptographic properties. With this idea, we propose a class of 1-resilient Boolean functions in odd variables with optimal algebraic degree, good nonlinearity and suboptimal algebraic immunity based on Tu-Deng's conjecture.

  • Pixel-Level ADC with Two-Step Integration for 2-D Microbolometer IRFPA

    Chi Ho HWANG  Doo Hyung WOO  Hee Chul LEE  

     
    BRIEF PAPER-Electronic Circuits

      Vol:
    E94-C No:12
      Page(s):
    1909-1912

    A readout circuit incorporating a pixel-level analog-to-digital converter (ADC) is studied for 2-dimensional microbolometer infrared focal plane arrays (IRFPAs). The integration time and signal-to-noise ratio (SNR) is improved using the current-mode bias and MSB skimming. The proposed pixel-level ADC is a two-step configuration, so its power consumption is very low. The readout circuit was designed using a 0.35 µm 2-poly 4-metal CMOS process for a 320240 microbolometer array with a pixel size of 35µm35µm. The noise equivalent temperature difference (NETD) was estimated to be 47 mK, with a power consumption of 390 nW for a pixel-level ADC.

  • High Power-Saving and Fidelity-Aware Hybrid Dimming Approach for an LED BLU-Based LCD

    Aldhino ANGGOROSESAR  Young-Jin KIM  Kee-Wook RIM  

     
    PAPER

      Vol:
    E94-C No:11
      Page(s):
    1760-1767

    Backlight dimming techniques have been researched much to obtain high power saving on display modules, especially those which are based on LCD. The use of LED as a light source in a backlight module has opened a wider chance to perform local dimming as an improvement of a conservative global dimming approach. However, local dimming techniques are sometimes observed to obtain worse performance than global dimming ones in terms of power saving or image fidelity. We observed that even some of their results show visible artifacts. In this paper, we propose a novel backlight dimming technique called hybrid dimming, which combines local and global dimming approaches effectively. We do local dimming to obtain the initial backlight levels while calculating its SSIM index, which is a human visual system-aware image quality metric. We then make sure that these backlight levels don't exceed the ones obtained from a human visual system-aware global dimming with similar image fidelity. As a result, our proposed method can gain better power saving than a human visual system-aware global dimming and prior local dimming techniques, while making little difference in the image fidelity and suppressing visible block artifacts in the results. Experimental results showed that the proposed technique can achieve up to 14, 2.2, and 2.4 times higher power saving ratio than human visual system-aware global dimming and two well-designed local dimming techniques, respectively.

  • A Note on “On the Construction of Boolean Functions with Optimal Algebraic Immunity”

    Yuan LI  Haibin KAN  Kokichi FUTATSUGI  

     
    LETTER-Cryptography and Information Security

      Vol:
    E94-A No:9
      Page(s):
    1877-1880

    In this note, we go further on the “basis exchange” idea presented in [2] by using Mobious inversion. We show that the matrix S1(f)S0(f)-1 has a nice form when f is chosen to be the majority function, where S1(f) is the matrix with row vectors υk(α) for all α ∈ 1f and S0(f)=S1(f ⊕ 1). And an exact counting for Boolean functions with maximum algebraic immunity by exchanging one point in on-set with one point in off-set of the majority function is given. Furthermore, we present a necessary condition according to weight distribution for Boolean functions to achieve algebraic immunity not less than a given number.

  • Noise-Tolerant DAC BIST Scheme Using Integral Calculus Approach

    Hyeonuk SON  Incheol KIM  Sang-Goog LEE  Jin-Ho AHN  Jeong-Do KIM  Sungho KANG  

     
    LETTER-Electronic Circuits

      Vol:
    E94-C No:8
      Page(s):
    1344-1347

    This paper proposes a built-in self-test (BIST) scheme for noise-tolerant testing of a digital-to-analogue converter (DAC). The proposed BIST calculates the differences in output voltages between a DAC and test modules. These differences are used as the inputs of an integrator that determines integral nonlinearity (INL). The proposed method has an advantage of random noise cancelation and achieves a higher test accuracy than do the conventional BIST methods. The simulation results show high standard noise-immunity and fault coverage for the proposed method.

  • Constructing Correlation Immune Symmetric Boolean Functions

    Jie PENG  Haibin KAN  

     
    LETTER-Coding Theory

      Vol:
    E94-A No:7
      Page(s):
    1591-1596

    A Boolean function is said to be correlation immune if its output leaks no information about its input values. Such functions have many applications in computer security practices including the construction of key stream generators from a set of shift registers. Finding methods for easy construction of correlation immune Boolean functions has been an active research area since the introduction of the notion by Siegenthaler. In this paper, we present several constructions of nonpalindromic correlation immune symmetric Boolean functions. Our methods involve finding binomial coefficient identities and obtaining new correlation immune functions from known correlation immune functions. We also consider the construction of higher order correlation immunity symmetric functions and propose a class of third order correlation immune symmetric functions on n variables, where n+1(≥ 9) is a perfect square.

  • Annihilators and Algebraic Immunity of Symmetric Boolean Functions

    Jie PENG  Haibin KAN  

     
    PAPER-Cryptography and Information Security

      Vol:
    E94-A No:6
      Page(s):
    1434-1440

    In this paper, we deal with the algebraic immunity of the symmetric Boolean functions. The algebraic immunity is a property which measures the resistance against the algebraic attacks on symmetric ciphers. It is well known that the algebraic immunity of the symmetric Boolean functions is completely determined by a narrow class of annihilators with low degree which is denoted by G(n,). We study and determine the weight support of part of these functions. Basing on this, we obtain some relations between the algebraic immunity of a symmetric Boolean function and its simplified value vector. For applications, we put forward an upper bound on the number of the symmetric Boolean functions with algebraic immunity at least d and prove that the algebraic immunity of the symmetric palindromic functions is not high.

  • An Electrically Adjustable 3-Terminal Regulator for Post-Fabrication Level-Trimming with a Reliable 1-Wire Serial I/O

    Hiroyuki MORIMOTO  Hiroki KOIKE  Kazuyuki NAKAMURA  

     
    PAPER

      Vol:
    E94-C No:6
      Page(s):
    945-952

    This paper describes a new technique for the design of 3-terminal regulators in which the output voltage level can be adjusted without additional terminals or extra off-chip components. This circuit restricts the increase in the number of terminal pins by using a pin as both a voltage supply output and a voltage setup input. The voltage setup information is introduced using a serial control signal from outside the chip. Using the intermediate voltage level between the supply voltage and the regulator output, the adjustment data in the internal nonvolatile memory are safely updated without noise disturbance. To input the setup information into the chip in a stable manner, we developed a new 1-wire serial interface which combines key pattern matching and burst signal detection. To ensure high reliability, we suggested a quantitative method for evaluating the influence of noise in our new interface using a simple model with superimposed random noise. Circuits additional to those for a conventional 3-terminal regulator, include a 1-wire serial communication circuit, a low-capacity non-volatile memory, and a digital to analog (D/A) converter. A test chip was developed using 0.35 µm standard CMOS process, and there was almost no overhead to the conventional 3-terminal regulator in both chip area and power dissipation. In an on-board test with the test chip, we confirmed successful output voltage adjustment from 1.0 V to 2.7 V with approximately 6.5 mV precision.

  • RF Propagation and Channel Modeling for UWB Wearable Devices Open Access

    Kamya YEKEH YAZDANDOOST  Kamran SAYRAFIAN-POUR  Kiyoshi HAMAGUCHI  

     
    INVITED PAPER

      Vol:
    E94-B No:5
      Page(s):
    1126-1134

    Wireless body area network for sensing and monitoring of vital signs is the one of most rapidly growing wireless communication system and Ultra Wide-Band (UWB) is a favorable technology for wearable medical sensors. The wireless body area networks promise to revolutionize health monitoring. However, designers of such systems face a number of challenging tasks. Efficient transceiver design requires in-depth understanding of the propagation media which in this case is the human body surface. The human body is not an ideal medium for RF wave transmission; it is partially conductive and consists of materials of different dielectric constants, thickness and characteristic impedance. The results of the few measurement experiments in recent publications point to varying conclusions in the derived parameters of the channel model. As obtaining large amount of data for many scenarios and use-cases is difficult for this channel, a detailed simulation platform can be extremely beneficial in highlighting the propagation behavior of the body surface and determining the best scenarios for limited physical measurements. In this paper, an immersive visualization environment is presented, which is used as a scientific instrument that gives us the ability to observe three-dimensional RF propagation from wearable medical sensors around a human body. We have used this virtual environment to further study UWB channels over the surface of a human body. Parameters of a simple statistical path-loss model and their sensitivity to frequency and the location of the sensors on the body are discussed.

  • Several Classes of Even-Variable Balanced Boolean Functions with Optimal Algebraic Immunity

    Chik-How TAN  Siong-Thye GOH  

     
    PAPER-Mathematics

      Vol:
    E94-A No:1
      Page(s):
    165-171

    In this paper, we constructed six infinite classes of balanced Boolean functions. These six classes of Boolean functions achieved optimal algebraic degree, optimal algebraic immunity and high nonlinearity. Furthermore, we gave the proof of the lower bound of the nonlinearities of these balanced Boolean functions and proved the better lower bound of nonlinearity for Carlet-Feng's Boolean function.

  • A Complete Solution to a Simple Case of Dynamic Observer Error Linearization: New Approach to Observer Error Linearization

    Jongwook YANG  Juhoon BACK  Jin H. SEO  

     
    LETTER-Systems and Control

      Vol:
    E94-A No:1
      Page(s):
    424-429

    In this letter, we propose a new observer error linearization approach that is called reduced-order dynamic observer error linearization (RDOEL), which is a modified version of dynamic observer error linearization (DOEL). We introduce the concepts and properties of RDOEL, and provide a complete solution to RDOEL with one integrator. Moreover, we show that it is also a complete solution to a simple case of DOEL.

  • Constructing Even-Variable Symmetric Boolean Functions with High Algebraic Immunity

    Yuan LI  Hui WANG  Haibin KAN  

     
    PAPER-Cryptography and Information Security

      Vol:
    E94-A No:1
      Page(s):
    362-366

    In this paper, we explicitly construct a large class of symmetric Boolean functions on 2k variables with algebraic immunity not less than d, where integer k is given arbitrarily and d is a given suffix of k in binary representation. If let d = k, our constructed functions achieve the maximum algebraic immunity. Remarkably, 2⌊ log2k ⌋ + 2 symmetric Boolean functions on 2k variables with maximum algebraic immunity are constructed, which are much more than the previous constructions. Based on our construction, a lower bound of symmetric Boolean functions with algebraic immunity not less than d is derived, which is 2⌊ log2d ⌋ + 2(k-d+1). As far as we know, this is the first lower bound of this kind.

  • Sorted Sector Covering Combined with Image Condensation -- An Efficient Method for Local Dimming of Direct-Lit and Edge-Lit LCDs Open Access

    Marc ALBRECHT  Andreas KARRENBAUER  Tobias JUNG  Chihao XU  

     
    INVITED PAPER

      Vol:
    E93-C No:11
      Page(s):
    1556-1563

    We consider the backlight calculation of local dimming as an optimization problem. The luminance produced by many LEDs at each pixel considered is calculated which should cover the gray value of each pixel, while the sum of LED currents is to be minimized. For this purpose a specific approach called as "Sorted Sector Covering" (SSC) was developed and is described in this paper. In our pre-processing unit called condenser the source image is reduced to a matrix of much lower resolution so that the computation effort of the SSC algorithm is drastically reduced. During this preprocessing phase, filter functions can be integrated so that a further reduction of the power consumption is achieved. Our processing system allows high power saving and high visual quality at low processor cost. We approach the local dimming problem in the physical viewing direction -- from LED to pixel. The luminance for the pixel is based on the light spread function (LSF) and the PWM values of the LEDs. As the physical viewing direction is chosen, this method is universal and can be applied for any kind of LED arrangement -- direct-lit as well as edge-lit. It is validated on prototypes, e.g., a locally dimmed edge-lit TV.

  • Reduction of Image Degradation due to Viewing Angle in Adaptive Dimming Technique Open Access

    Seiji OGAKI  Kazuma SAKAKIBARA  Tomokazu SHIGA  

     
    INVITED PAPER

      Vol:
    E93-C No:11
      Page(s):
    1572-1576

    An adaptive dimming technique controls both LCD panel transmittance and its backlight luminance adequately and locally according to the input TV signal. The technique reduces the power consumption and also improves the picture quality. However, a steep change in backlight luminance distribution due to the application of the technique causes image degradation around the boundary of the segments when the LCD is viewed from an angle. The main factor of image degradation is the illumination of a pixel by neighboring pixel's corresponding backlight when the LCD is viewed from an angle rather than normal direction. From the subjective evaluation of image quality and computer simulation, it is found that the gradient of the backlight luminance variation to luminance at the border of the segment should be less than 0.022 per pixel in order to suppress the image degradation.

  • Immunity Modeling of Integrated Circuits: An Industrial Case

    Frederic LAFON  Francois DE DARAN  Mohamed RAMDANI  Richard PERDRIAU  M'hamed DRISSI  

     
    PAPER-Chip and Package Level EMC

      Vol:
    E93-B No:7
      Page(s):
    1723-1730

    This paper introduces a new technique for electromagnetic immunity modeling of integrated circuits (ICs), compliant with industrial requirements and valid up to 3 GHz. A specific modeling flow is introduced, which makes it possible to predict the conducted immunity of an IC according to a given criterion, whatever its external environment. This methodology was validated through measurements performed on several devices.

  • imCast: Studio-Quality Digital Media Platform Exploiting Broadband IP Networks

    Jinyong JO  JongWon KIM  

     
    PAPER-Educational Technology

      Vol:
    E93-D No:5
      Page(s):
    1214-1224

    The recent growth in available network bandwidth envisions the wide-spread use of broadband applications such as uncompressed HD-SDI (High-definition serial digital interface) over IP. These cutting-edge applications are also driving the development of a media-oriented infrastructure for networked collaboration. This paper introduces imCast, a high-quality digital media platform dealing with uncompressed HD-SDI over IP, and discusses its internal architecture in depth. imCast mainly provides cost-effective hardware-based approaches for high-quality media acquisition and presentation; flexible software-based approaches for presentation; and allows for economical network transmission. Experimental results (taken over best-effort IP networks) will demonstrate the functional feasibility and performance of imCast.

  • Constructing and Counting Boolean Functions on Even Variables with Maximum Algebraic Immunity

    Yuan LI  Min YANG  Haibin KAN  

     
    LETTER-Cryptography and Information Security

      Vol:
    E93-A No:3
      Page(s):
    640-643

    A method to construct Boolean functions with maximum algebraic immunity have been proposed in . Based on that method, we propose a different method to construct Boolean functions on even variables with maximum algebraic immunity in this letter. By counting on our construction, a lower bound of the number of such Boolean functions is derived, which is the best among all the existing lower bounds.

41-60hit(141hit)