The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] IT(16991hit)

441-460hit(16991hit)

  • Toward Selective Adversarial Attack for Gait Recognition Systems Based on Deep Neural Network

    Hyun KWON  

     
    LETTER-Information Network

      Pubricized:
    2022/11/07
      Vol:
    E106-D No:2
      Page(s):
    262-266

    Deep neural networks (DNNs) perform well for image recognition, speech recognition, and pattern analysis. However, such neural networks are vulnerable to adversarial examples. An adversarial example is a data sample created by adding a small amount of noise to an original sample in such a way that it is difficult for humans to identify but that will cause the sample to be misclassified by a target model. In a military environment, adversarial examples that are correctly classified by a friendly model while deceiving an enemy model may be useful. In this paper, we propose a method for generating a selective adversarial example that is correctly classified by a friendly gait recognition system and misclassified by an enemy gait recognition system. The proposed scheme generates the selective adversarial example by combining the loss for correct classification by the friendly gait recognition system with the loss for misclassification by the enemy gait recognition system. In our experiments, we used the CASIA Gait Database as the dataset and TensorFlow as the machine learning library. The results show that the proposed method can generate selective adversarial examples that have a 98.5% attack success rate against an enemy gait recognition system and are classified with 87.3% accuracy by a friendly gait recognition system.

  • Intelligent Reconfigurable Surface-Aided Space-Time Line Code for 6G IoT Systems: A Low-Complexity Approach

    Donghyun KIM  Bang Chul JUNG  

     
    LETTER-Information Theory

      Pubricized:
    2022/08/10
      Vol:
    E106-A No:2
      Page(s):
    154-158

    Intelligent reconfigurable surfaces (IRS) have attracted much attention from both industry and academia due to their performance improving capability and low complexity for 6G wireless communication systems. In this letter, we introduce an IRS-assisted space-time line code (STLC) technique. The STLC was introduced as a promising technique to acquire the optimal diversity gain in 1×2 single-input multiple-output (SIMO) channel without channel state information at receiver (CSIR). Using the cosine similarity theorem, we propose a novel phase-steering technique for the proposed IRS-assisted STLC technique. We also mathematically characterize the proposed IRS-assisted STLC technique in terms of outage probability and bit-error rate (BER). Based on computer simulations, it is shown that the results of analysis shows well match with the computer simulation results for various communication scenarios.

  • Recent Progress in Visible Light Positioning and Communication Systems Open Access

    Sheng ZHANG  Pengfei DU  Helin YANG  Ran ZHANG  Chen CHEN  Arokiaswami ALPHONES  

     
    INVITED PAPER

      Pubricized:
    2022/08/22
      Vol:
    E106-B No:2
      Page(s):
    84-100

    In this paper, we report the recent progress in visible light positioning and communication systems using light-emitting diodes (LEDs). Due to the wide deployment of LEDs for indoor illumination, visible light positioning (VLP) and visible light communication (VLC) using existing LEDs fixtures have attracted great attention in recent years. Here, we review our recent works on visible light positioning and communication, including image sensor-based VLP, photodetector-based VLP, integrated VLC and VLP (VLCP) systems, and heterogeneous radio frequency (RF) and VLC (RF/VLC) systems.

  • A SOM-CNN Algorithm for NLOS Signal Identification

    Ze Fu GAO  Hai Cheng TAO   Qin Yu ZHU  Yi Wen JIAO  Dong LI  Fei Long MAO  Chao LI  Yi Tong SI  Yu Xin WANG  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2022/08/01
      Vol:
    E106-B No:2
      Page(s):
    117-132

    Aiming at the problem of non-line of sight (NLOS) signal recognition for Ultra Wide Band (UWB) positioning, we utilize the concepts of Neural Network Clustering and Neural Network Pattern Recognition. We propose a classification algorithm based on self-organizing feature mapping (SOM) neural network batch processing, and a recognition algorithm based on convolutional neural network (CNN). By assigning different weights to learning, training and testing parts in the data set of UWB location signals with given known patterns, a strong NLOS signal recognizer is trained to minimize the recognition error rate. Finally, the proposed NLOS signal recognition algorithm is verified using data sets from real scenarios. The test results show that the proposed algorithm can solve the problem of UWB NLOS signal recognition under strong signal interference. The simulation results illustrate that the proposed algorithm is significantly more effective compared with other algorithms.

  • Multi-Input Physical Layer Network Coding in Two-Dimensional Wireless Multihop Networks

    Hideaki TSUGITA  Satoshi DENNO  Yafei HOU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/08/10
      Vol:
    E106-B No:2
      Page(s):
    193-202

    This paper proposes multi-input physical layer network coding (multi-input PLNC) for high speed wireless communication in two-dimensional wireless multihop networks. In the proposed PLNC, all the terminals send their packets simultaneously for the neighboring relays to maximize the network throughput in the first slot, and all the relays also do the same to the neighboring terminals in the second slot. Those simultaneous signal transmissions cause multiple signals to be received at the relays and the terminals. Signal reception in the multi-input PLNC uses multichannel filtering to mitigate the difficulties caused by the multiple signal reception, which enables the two-input PLNC to be applied. In addition, a non-linear precoding is proposed to reduce the computational complexity of the signal detection at the relays and the terminals. The proposed multi-input PLNC makes all the terminals exchange their packets with the neighboring terminals in only two time slots. The performance of the proposed multi-input PLNC is confirmed by computer simulation. The proposed multi-input physical layer network coding achieves much higher network throughput than conventional techniques in a two-dimensional multihop wireless network with 7 terminals. The proposed multi-input physical layer network coding attains superior transmission performance in wireless hexagonal multihop networks, as long as more than 6 antennas are placed on the terminals and the relays.

  • Flow Processing Optimization with Accelerated Flow Actions on High Speed Programmable Data Plane

    Zhiyuan LING  Xiao CHEN  Lei SONG  

     
    PAPER-Network System

      Pubricized:
    2022/08/10
      Vol:
    E106-B No:2
      Page(s):
    133-144

    With the development of network technology, next-generation networks must satisfy many new requirements for network functions and performance. The processing of overlong packet fields is one of the requirements and is also the basis for ID-based routing and content lookup, and packet field addition/deletion mechanisms. The current SDN switches do not provide good support for the processing of overlong fields. In this paper, we propose a series of optimization mechanisms for protocol-oblivious instructions, in which we address the problem of insufficient support for overlong data in existing SDN switches by extending the bit width of instructions and accelerating them using SIMD instruction sets. We also provide an intermediate representation of the protocol-oblivious instruction set to improve the efficiency of storing and reading instruction blocks, and further reduce the execution time of instruction blocks by preprocessing them. The experiments show that our approach improves the performance of overlong data processing by 56%. For instructions involving packet field addition and deletion, the improvement in performance reaches 455%. In normal forwarding scenarios, our solution reduces the packet forwarding latency by around 30%.

  • DISOV: Discovering Second-Order Vulnerabilities Based on Web Application Property Graph

    Yu CHEN  Zulie PAN  Yuanchao CHEN  Yuwei LI  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2022/07/26
      Vol:
    E106-A No:2
      Page(s):
    133-145

    Web application second-order vulnerabilities first inject malicious code into the persistent data stores of the web server and then execute it at later sensitive operations, causing severe impact. Nevertheless, the dynamic features, the complex data propagation, and the inter-state dependencies bring many challenges in discovering such vulnerabilities. To address these challenges, we propose DISOV, a web application property graph (WAPG) based method to discover second-order vulnerabilities. Specifically, DISOV first constructs WAPG to represent data propagation and inter-state dependencies of the web application, which can be further leveraged to find the potential second-order vulnerabilities paths. Then, it leverages fuzz testing to verify the potential vulnerabilities paths. To verify the effectiveness of DISOV, we tested it in 13 popular web applications in real-world and compared with Black Widow, the state-of-the-art web vulnerability scanner. DISOV discovered 43 second-order vulnerabilities, including 23 second-order XSS vulnerabilities, 3 second-order SQL injection vulnerabilities, and 17 second-order RCE vulnerabilities. While Black Widow only discovered 18 second-order XSS vulnerabilities, with none second-order SQL injection vulnerability and second-order RCE vulnerability. In addition, DISOV has found 12 0-day second-order vulnerabilities, demonstrating its effectiveness in practice.

  • Quality and Quantity Pair as Trust Metric

    Ken MANO  Hideki SAKURADA  Yasuyuki TSUKADA  

     
    PAPER-Information Network

      Pubricized:
    2022/11/08
      Vol:
    E106-D No:2
      Page(s):
    181-194

    We present a mathematical formulation of a trust metric using a quality and quantity pair. Under a certain assumption, we regard trust as an additive value and define the soundness of a trust computation as not to exceed the total sum. Moreover, we point out the importance of not only soundness of each computed trust but also the stability of the trust computation procedure against changes in trust value assignment. In this setting, we define trust composition operators. We also propose a trust computation protocol and prove its soundness and stability using the operators.

  • Making General Dilution Graphs Robust to Unbalanced-Split Errors on Digital Microfluidic Biochips

    Ikuru YOSHIDA  Shigeru YAMASHITA  

     
    PAPER-VLSI Design Technology and CAD

      Pubricized:
    2022/07/26
      Vol:
    E106-A No:2
      Page(s):
    97-105

    Digital Microfluidic Biochips (DMFBs) can execute biochemical experiments very efficiently, and thus they are drawing attention recently. In biochemical experiments on a DMFB, “sample preparation” is an important task to generate a sample droplet with the desired concentration value. We merge/split droplets in a DMFB to perform sample preparation. When we split a droplet into two droplets, the split cannot be done evenly in some cases. By some unbalanced splits, the generated concentration value may have unacceptable errors. This paper shows that we can decrease the impact of errors caused by unbalanced splits if we duplicate some mixing nodes in a given dilution graph for most cases. We then propose an efficient method to transform a dilution graph in order to decrease the impact of errors caused by unbalanced splits. We also present a preliminary experimental result to show the potential of our method.

  • Characterizing Privacy Leakage in Encrypted DNS Traffic

    Guannan HU  Kensuke FUKUDA  

     
    PAPER-Internet

      Pubricized:
    2022/08/02
      Vol:
    E106-B No:2
      Page(s):
    156-165

    Increased demand for DNS privacy has driven the creation of several encrypted DNS protocols, such as DNS over HTTPS (DoH), DNS over TLS (DoT), and DNS over QUIC (DoQ). Recently, DoT and DoH have been deployed by some vendors like Google and Cloudflare. This paper addresses privacy leakage in these three encrypted DNS protocols (especially DoQ) with different DNS recursive resolvers (Google, NextDNS, and Bind) and DNS proxy (AdGuard). More particularly, we investigate encrypted DNS traffic to determine whether the adversary can infer the category of websites users visit for this purpose. Through analyzing packet traces of three encrypted DNS protocols, we show that the classification performance of the websites (i.e., user's privacy leakage) is very high in terms of identifying 42 categories of the websites both in public (Google and NextDNS) and local (Bind) resolvers. By comparing the case with cache and without cache at the local resolver, we confirm that the caching effect is negligible as regards identification. We also show that discriminative features are mainly related to the inter-arrival time of packets for DNS resolving. Indeed, we confirm that the F1 score decreases largely by removing these features. We further investigate two possible countermeasures that could affect the inter-arrival time analysis in the local resolver: AdBlocker and DNS prefetch. However, there is no significant improvement in results with these countermeasures. These findings highlight that information leakage is still possible even in encrypted DNS traffic regardless of underlying protocols (i.e., HTTPS, TLS, QUIC).

  • Critical Location of Communications Network with Power Grid Power Supply Open Access

    Hiroshi SAITO  

     
    PAPER-Network Management/Operation

      Pubricized:
    2022/08/10
      Vol:
    E106-B No:2
      Page(s):
    166-173

    When a disaster hits a network, network service disruptions can occur even if the network facilities have survived and battery and power generators are provided. This is because in the event of a disaster, the power supply will not be restarted within the lifetime of the battery or oil transportation will not be restarted before running out of oil and power will be running out. Therefore, taking a power grid into account is important. This paper proposes a polynomial-time algorithm to identify the critical location C*D of a communications network Nc when a disaster hits. Electrical power grid Np supplies power to the nodes of Nc, and a link in Nc is disconnected when a node or a link in Nc or Np fails. Here, the disaster area is modeled as co-centric disks and the failure probability is higher in the inner disk than the outer one. The location of the center of the disaster with the greatest expected number of disconnected links in Nc is taken as the critical location C*D.

  • Commit-Based Class-Level Defect Prediction for Python Projects

    Khine Yin MON  Masanari KONDO  Eunjong CHOI  Osamu MIZUNO  

     
    PAPER

      Pubricized:
    2022/11/14
      Vol:
    E106-D No:2
      Page(s):
    157-165

    Defect prediction approaches have been greatly contributing to software quality assurance activities such as code review or unit testing. Just-in-time defect prediction approaches are developed to predict whether a commit is a defect-inducing commit or not. Prior research has shown that commit-level prediction is not enough in terms of effort, and a defective commit may contain both defective and non-defective files. As the defect prediction community is promoting fine-grained granularity prediction approaches, we propose our novel class-level prediction, which is finer-grained than the file-level prediction, based on the files of the commits in this research. We designed our model for Python projects and tested it with ten open-source Python projects. We performed our experiment with two settings: setting with product metrics only and setting with product metrics plus commit information. Our investigation was conducted with three different classifiers and two validation strategies. We found that our model developed by random forest classifier performs the best, and commit information contributes significantly to the product metrics in 10-fold cross-validation. We also created a commit-based file-level prediction for the Python files which do not have the classes. The file-level model also showed a similar condition as the class-level model. However, the results showed a massive deviation in time-series validation for both levels and the challenge of predicting Python classes and files in a realistic scenario.

  • Superposition Signal Input Decoding for Lattice Reduction-Aided MIMO Receivers Open Access

    Satoshi DENNO  Koki KASHIHARA  Yafei HOU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/08/01
      Vol:
    E106-B No:2
      Page(s):
    184-192

    This paper proposes a novel approach to low complexity soft input decoding for lattice reduction-aided MIMO receivers. The proposed approach feeds a soft input decoder with soft signals made from hard decision signals generated by using a lattice reduction-aided linear detector. The soft signal is a weighted-sum of some candidate vectors that are near by the hard decision signal coming out from the lattice reduction-aided linear detector. This paper proposes a technique to adjust the weight adapt to the channel for the higher transmission performance. Furthermore, we propose to introduce a coefficient that is used for the weights in order to enhance the transmission performance. The transmission performance is evaluated in a 4×4 MIMO channel. When a linear MMSE filter or a serial interference canceller is used as the linear detector, the proposed technique achieves about 1.0dB better transmission performance at the BER of 10-5 than the decoder fed with the hard decision signals. In addition, the low computational complexity of the proposed technique is quantitatively evaluated.

  • A Compression Router for Low-Latency Network-on-Chip

    Naoya NIWA  Yoshiya SHIKAMA  Hideharu AMANO  Michihiro KOIBUCHI  

     
    PAPER-Computer System

      Pubricized:
    2022/11/08
      Vol:
    E106-D No:2
      Page(s):
    170-180

    Network-on-Chips (NoCs) are important components for scalable many-core processors. Because the performance of parallel applications is usually sensitive to the latency of NoCs, reducing it is a primary requirement. In this study, a compression router that hides the (de)compression-operation delay is proposed. The compression router (de)compresses the contents of the incoming packet before the switch arbitration is completed, thus shortening the packet length without latency penalty and reducing the network injection-and-ejection latency. Evaluation results show that the compression router improves up to 33% of the parallel application performance (conjugate gradients (CG), fast Fourier transform (FT), integer sort (IS), and traveling salesman problem (TSP)) and 63% of the effective network throughput by 1.8 compression ratio on NoC. The cost is an increase in router area and its energy consumption by 0.22mm2 and 1.6 times compared to the conventional virtual-channel router. Another finding is that off-loading the decompressor onto a network interface decreases the compression-router area by 57% at the expense of the moderate increase in communication latency.

  • An Efficient Method to Decompose and Map MPMCT Gates That Accounts for Qubit Placement

    Atsushi MATSUO  Wakaki HATTORI  Shigeru YAMASHITA  

     
    PAPER-Algorithms and Data Structures

      Pubricized:
    2022/08/10
      Vol:
    E106-A No:2
      Page(s):
    124-132

    Mixed-Polarity Multiple-Control Toffoli (MPMCT) gates are generally used to implement large control logic functions for quantum computation. A logic circuit consisting of MPMCT gates needs to be mapped to a quantum computing device that invariably has a physical limitation, which means we need to (1) decompose the MPMCT gates into one- or two-qubit gates, and then (2) insert SWAP gates so that all the gates can be performed on Nearest Neighbor Architectures (NNAs). Up to date, the above two processes have only been studied independently. In this work, we investigate that the total number of gates in a circuit can be decreased if the above two processes are considered simultaneously as a single step. We developed a method that inserts SWAP gates while decomposing MPMCT gates unlike most of the existing methods. Also, we consider the effect on the latter part of a circuit carefully by considering the qubit placement when decomposing an MPMCT gate. Experimental results demonstrate the effectiveness of our method.

  • Influence of Additive and Contaminant Noise on Control-Feedback Induced Chaotic Resonance in Excitatory-Inhibitory Neural Systems

    Sou NOBUKAWA  Nobuhiko WAGATSUMA  Haruhiko NISHIMURA  Keiichiro INAGAKI  Teruya YAMANISHI  

     
    PAPER-Nonlinear Problems

      Pubricized:
    2022/07/07
      Vol:
    E106-A No:1
      Page(s):
    11-22

    Recent developments in engineering applications of stochastic resonance have expanded to various fields, especially biomedicine. Deterministic chaos generates a phenomenon known as chaotic resonance, which is similar to stochastic resonance. However, engineering applications of chaotic resonance are limited owing to the problems in controlling chaos, despite its uniquely high sensitivity to weak signal responses. To tackle these problems, a previous study proposed “reduced region of orbit” (RRO) feedback methods, which cause chaotic resonance using external feedback signals. However, this evaluation was conducted under noise-free conditions. In actual environments, background noise and measurement errors are inevitable in the estimation of RRO feedback strength; therefore, their impact must be elucidated for the application of RRO feedback methods. In this study, we evaluated the chaotic resonance induced by the RRO feedback method in chaotic neural systems in the presence of stochastic noise. Specifically, we focused on the chaotic resonance induced by RRO feedback signals in a neural system composed of excitatory and inhibitory neurons, a typical neural system wherein chaotic resonance is observed in the presence of additive noise and feedback signals including the measurement error (called contaminant noise). It was found that for a relatively small noise strength, both types of noise commonly degenerated the degree of synchronization in chaotic resonance induced by RRO feedback signals, although these characteristics were significantly different. In contrast, chaos-chaos intermittency synchronization was observed for a relatively high noise strength owing to the noise-induced attractor merging bifurcation for both types of noise. In practical neural systems, the influence of noise is unavoidable; therefore, this study highlighted the importance of the countermeasures for noise in the application of chaotic resonance and utilization of noise-induced attractor merging bifurcation.

  • Projection-Based Physical Adversarial Attack for Monocular Depth Estimation

    Renya DAIMO  Satoshi ONO  

     
    LETTER

      Pubricized:
    2022/10/17
      Vol:
    E106-D No:1
      Page(s):
    31-35

    Monocular depth estimation has improved drastically due to the development of deep neural networks (DNNs). However, recent studies have revealed that DNNs for monocular depth estimation contain vulnerabilities that can lead to misestimation when perturbations are added to input. This study investigates whether DNNs for monocular depth estimation is vulnerable to misestimation when patterned light is projected on an object using a video projector. To this end, this study proposes an evolutionary adversarial attack method with multi-fidelity evaluation scheme that allows creating adversarial examples under black-box condition while suppressing the computational cost. Experiments in both simulated and real scenes showed that the designed light pattern caused a DNN to misestimate objects as if they have moved to the back.

  • Metacognitive Adaptation to Enhance Lifelong Language Learning

    Han WANG  Ruiliu FU  Xuejun ZHANG  Jun ZHOU  Qingwei ZHAO  

     
    LETTER-Natural Language Processing

      Pubricized:
    2022/10/06
      Vol:
    E106-D No:1
      Page(s):
    86-90

    Lifelong language learning (LLL) aims at learning new tasks and retaining old tasks in the field of NLP. LAMOL is a recent LLL framework following data-free constraints. Previous works have been researched based on LAMOL with additional computing with more time costs or new parameters. However, they still have a gap between multi-task learning (MTL), which is regarded as the upper bound of LLL. In this paper, we propose Metacognitive Adaptation (Metac-Adapt) almost without adding additional time cost and computational resources to make the model generate better pseudo samples and then replay them. Experimental results demonstrate that Metac-Adapt is on par with MTL or better.

  • A Non-Intrusive Speech Quality Evaluation Method Based on the Audiogram and Weighted Frequency Information for Hearing Aid

    Ruxue GUO  Pengxu JIANG  Ruiyu LIANG  Yue XIE  Cairong ZOU  

     
    LETTER-Speech and Hearing

      Pubricized:
    2022/07/25
      Vol:
    E106-A No:1
      Page(s):
    64-68

    For a long time, the compensation effect of hearing aid is mainly evaluated subjectively, and there are fewer studies of objective evaluation. Furthermore, a pure speech signal is generally required as a reference in the existing objective evaluation methods, which restricts the practicality in a real-world environment. Therefore, this paper presents a non-intrusive speech quality evaluation method for hearing aid, which combines the audiogram and weighted frequency information. The proposed model mainly includes an audiogram information extraction network, a frequency information extraction network, and a quality score mapping network. The audiogram is the input of the audiogram information extraction network, which helps the system capture the information related to hearing loss. In addition, the low-frequency bands of speech contain loudness information and the medium and high-frequency components contribute to semantic comprehension. The information of two frequency bands is input to the frequency information extraction network to obtain time-frequency information. When obtaining the high-level features of different frequency bands and audiograms, they are fused into two groups of tensors that distinguish the information of different frequency bands and used as the input of the attention layer to calculate the corresponding weight distribution. Finally, a dense layer is employed to predict the score of speech quality. The experimental results show that it is reasonable to combine the audiogram and the weight of the information from two frequency bands, which can effectively realize the evaluation of the speech quality of the hearing aid.

  • Learning Sparse Graph with Minimax Concave Penalty under Gaussian Markov Random Fields

    Tatsuya KOYAKUMARU  Masahiro YUKAWA  Eduardo PAVEZ  Antonio ORTEGA  

     
    PAPER-Graphs and Networks

      Pubricized:
    2022/07/01
      Vol:
    E106-A No:1
      Page(s):
    23-34

    This paper presents a convex-analytic framework to learn sparse graphs from data. While our problem formulation is inspired by an extension of the graphical lasso using the so-called combinatorial graph Laplacian framework, a key difference is the use of a nonconvex alternative to the l1 norm to attain graphs with better interpretability. Specifically, we use the weakly-convex minimax concave penalty (the difference between the l1 norm and the Huber function) which is known to yield sparse solutions with lower estimation bias than l1 for regression problems. In our framework, the graph Laplacian is replaced in the optimization by a linear transform of the vector corresponding to its upper triangular part. Via a reformulation relying on Moreau's decomposition, we show that overall convexity is guaranteed by introducing a quadratic function to our cost function. The problem can be solved efficiently by the primal-dual splitting method, of which the admissible conditions for provable convergence are presented. Numerical examples show that the proposed method significantly outperforms the existing graph learning methods with reasonable computation time.

441-460hit(16991hit)