The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] IT(16991hit)

541-560hit(16991hit)

  • 28nm Atom-Switch FPGA: Static Timing Analysis and Evaluation

    Xu BAI  Ryusuke NEBASHI  Makoto MIYAMURA  Kazunori FUNAHASHI  Naoki BANNO  Koichiro OKAMOTO  Hideaki NUMATA  Noriyuki IGUCHI  Tadahiko SUGIBAYASHI  Toshitsugu SAKAMOTO  Munehiro TADA  

     
    BRIEF PAPER

      Pubricized:
    2022/06/27
      Vol:
    E105-C No:10
      Page(s):
    627-630

    A static timing analysis (STA) tool for a 28nm atom-switch FPGA (AS-FPGA) is introduced to validate the signal delay of an application circuit before implementation. High accuracy of the STA tool is confirmed by implementing a practical application circuit on the 28nm AS-FPGA. Moreover, dramatic improvement of delay and power is demonstrated in comparison with a previous 40nm AS-FPGA.

  • Geometric Partitioning Mode with Inter and Intra Prediction for Beyond Versatile Video Coding

    Yoshitaka KIDANI  Haruhisa KATO  Kei KAWAMURA  Hiroshi WATANABE  

     
    PAPER

      Pubricized:
    2022/06/21
      Vol:
    E105-D No:10
      Page(s):
    1691-1703

    Geometric partitioning mode (GPM) is a new inter prediction tool adopted in versatile video coding (VVC), which is the latest video coding of international standard developed by joint video expert team in 2020. Different from the regular inter prediction performed on rectangular blocks, GPM separates a coding block into two regions by the pre-defined 64 types of straight lines, generates inter predicted samples for each separated region, and then blends them to obtain the final inter predicted samples. With this feature, GPM improves the prediction accuracy at the boundary between the foreground and background with different motions. However, GPM has room to further improve the prediction accuracy if the final predicted samples can be generated using not only inter prediction but also intra prediction. In this paper, we propose a GPM with inter and intra prediction to achieve further enhanced compression capability beyond VVC. To maximize the coding performance of the proposed method, we also propose the restriction of the applicable intra prediction mode number and the prohibition of applying the intra prediction to both GPM-separated regions. The experimental results show that the proposed method improves the coding performance gain by the conventional GPM method of VVC by 1.3 times, and provides an additional coding performance gain of 1% bitrate savings in one of the coding structures for low-latency video transmission where the conventional GPM method cannot be utilized.

  • A Bus Crowdedness Sensing System Using Deep-Learning Based Object Detection

    Wenhao HUANG  Akira TSUGE  Yin CHEN  Tadashi OKOSHI  Jin NAKAZAWA  

     
    PAPER

      Pubricized:
    2022/06/23
      Vol:
    E105-D No:10
      Page(s):
    1712-1720

    Crowdedness of buses is playing an increasingly important role in the disease control of COVID-19. The lack of a practical approach to sensing the crowdedness of buses is a major problem. This paper proposes a bus crowdedness sensing system which exploits deep learning-based object detection to count the numbers of passengers getting on and off a bus and thus estimate the crowdedness of buses in real time. In our prototype system, we combine YOLOv5s object detection model with Kalman Filter object tracking algorithm to implement a sensing algorithm running on a Jetson nano-based vehicular device mounted on a bus. By using the driving recorder video data taken from real bus, we experimentally evaluate the performance of the proposed sensing system to verify that our proposed system system improves counting accuracy and achieves real-time processing at the Jetson Nano platform.

  • Strengthening Network-Based Moving Target Defense with Disposable Identifiers

    Taekeun PARK  Keewon KIM  

     
    LETTER-Information Network

      Pubricized:
    2022/07/08
      Vol:
    E105-D No:10
      Page(s):
    1799-1802

    In this paper, we propose a scheme to strengthen network-based moving target defense with disposable identifiers. The main idea is to change disposable identifiers for each packet to maximize unpredictability with large hopping space and substantially high hopping frequency. It allows network-based moving target defense to defeat active scanning, passive scanning, and passive host profiling attacks. Experimental results show that the proposed scheme changes disposable identifiers for each packet while requiring low overhead.

  • Convolutional Auto-Encoder and Adversarial Domain Adaptation for Cross-Corpus Speech Emotion Recognition

    Yang WANG  Hongliang FU  Huawei TAO  Jing YANG  Hongyi GE  Yue XIE  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2022/07/12
      Vol:
    E105-D No:10
      Page(s):
    1803-1806

    This letter focuses on the cross-corpus speech emotion recognition (SER) task, in which the training and testing speech signals in cross-corpus SER belong to different speech corpora. Existing algorithms are incapable of effectively extracting common sentiment information between different corpora to facilitate knowledge transfer. To address this challenging problem, a novel convolutional auto-encoder and adversarial domain adaptation (CAEADA) framework for cross-corpus SER is proposed. The framework first constructs a one-dimensional convolutional auto-encoder (1D-CAE) for feature processing, which can explore the correlation among adjacent one-dimensional statistic features and the feature representation can be enhanced by the architecture based on encoder-decoder-style. Subsequently the adversarial domain adaptation (ADA) module alleviates the feature distributions discrepancy between the source and target domains by confusing domain discriminator, and specifically employs maximum mean discrepancy (MMD) to better accomplish feature transformation. To evaluate the proposed CAEADA, extensive experiments were conducted on EmoDB, eNTERFACE, and CASIA speech corpora, and the results show that the proposed method outperformed other approaches.

  • Design and Integration of Beyond-10MHz High Switching Frequency DC-DC Converter Open Access

    Kousuke MIYAJI  

     
    INVITED PAPER

      Pubricized:
    2022/04/20
      Vol:
    E105-C No:10
      Page(s):
    521-533

    There are continuous and strong demands for the DC-DC converter to reduce the size of passive components and increase the system power density. Advances in CMOS processes and GaN FETs enabled the switching frequency of DC-DC converters to be beyond 10MHz. The advancements of 3-D integrated magnetics will further reduce the footprint. In this paper, the overview of beyond-10MHz DC-DC converters will be provided first, and our recent achievements are introduced focusing on 3D-integration of Fe-based metal composite magnetic core inductor, and GaN FET control designs.

  • Coupler Design and Analysis of Capacitive Wireless Power Charging for Implantable Medical Devices

    Marimo MATSUMOTO  Masaya TAMURA  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2022/03/30
      Vol:
    E105-C No:9
      Page(s):
    398-406

    Couplers in a film-type capacitive wireless power charging (CWC) system for an implantable medical device were designed and analyzed in this work. Due to the high conductivity of the human body, two paths contribute to the power transmission, namely a high-frequency current and an electric field. This was confirmed by an equivalent circuit of the system. During analysis of the system, we used pig skin with subcutaneous fat, which has a high affinity with the human body, to search for a highly efficient electrode shape. Subsequently, we fabricated the designed coupler and measured ηmax. An ηmax of 56.6% was obtained for a half-circular coupler with a radius of 20 mm and a distance of 10 mm between adjacent couplers. This study will contribute to the realization of implantable devices that can be recharged during breaks or while sleeping at home and is expected to significantly reduce the burden on patients.

  • An Efficient Exponentiation Algorithm in GF(2m) Using Euclidean Inversion Open Access

    Wei HE  Yu ZHANG  Yin LI  

     
    LETTER-Numerical Analysis and Optimization

      Pubricized:
    2022/04/26
      Vol:
    E105-A No:9
      Page(s):
    1381-1384

    We introduce a new type of exponentiation algorithm in GF(2m) using Euclidean inversion. Our approach is based on the fact that Euclidean inversion cost much less logic gates than ordinary multiplication in GF(2m). By applying signed binary form of the exponent instead of classic binary form, the proposed algorithm can reduce the number of operations further compared with the classic algorithms.

  • The Lower Bound of Second-Order Nonlinearity of a Class of Boolean Functions Open Access

    Luozhong GONG  Shangzhao LI  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2022/03/10
      Vol:
    E105-A No:9
      Page(s):
    1317-1321

    The r-th nonlinearity of Boolean functions is an important cryptographic criterion associated with higher order linearity attacks on stream and block ciphers. In this paper, we tighten the lower bound of the second-order nonlinearity of a class of Boolean function over finite field F2n, fλ(x)=Tr(λxd), where λ∈F*2r, d=22r+2r+1 and n=7r. This bound is much better than the lower bound of Iwata-Kurosawa.

  • Approximability of the Distance Independent Set Problem on Regular Graphs and Planar Graphs

    Hiroshi ETO  Takehiro ITO  Zhilong LIU  Eiji MIYANO  

     
    PAPER-Algorithms and Data Structures, Graphs and Networks

      Pubricized:
    2022/03/09
      Vol:
    E105-A No:9
      Page(s):
    1211-1222

    This paper studies generalized variants of the MAXIMUM INDEPENDENT SET problem, called the MAXIMUM DISTANCE-d INDEPENDENT SET problem (MaxDdIS for short). For an integer d≥2, a distance-d independent set of an unweighted graph G=(V, E) is a subset S⊆V of vertices such that for any pair of vertices u, v∈S, the number of edges in any path between u and v is at least d in G. Given an unweighted graph G, the goal of MaxDdIS is to find a maximum-cardinality distance-d independent set of G. In this paper, we analyze the (in)approximability of the problem on r-regular graphs (r≥3) and planar graphs, as follows: (1) For every fixed integers d≥3 and r≥3, MaxDdIS on r-regular graphs is APX-hard. (2) We design polynomial-time O(rd-1)-approximation and O(rd-2/d)-approximation algorithms for MaxDdIS on r-regular graphs. (3) We sharpen the above O(rd-2/d)-approximation algorithms when restricted to d=r=3, and give a polynomial-time 2-approximation algorithm for MaxD3IS on cubic graphs. (4) Finally, we show that MaxDdIS admits a polynomial-time approximation scheme (PTAS) for planar graphs.

  • A Note on the Intersection of Alternately Orientable Graphs and Cocomparability Graphs

    Asahi TAKAOKA  

     
    PAPER-Graphs and Networks, Algorithms and Data Structures

      Pubricized:
    2022/03/07
      Vol:
    E105-A No:9
      Page(s):
    1223-1227

    We studied whether a statement similar to the Ghouila-Houri's theorem might hold for alternating orientations of cocomparability graphs. In this paper, we give the negative answer. We prove that it is NP-complete to decide whether a cocomparability graph has an orientation that is alternating and acyclic. Hence, cocomparability graphs with an acyclic alternating orientation form a proper subclass of alternately orientable cocomparability graphs. We also provide a separating example, that is, an alternately orientable cocomparability graph such that no alternating orientation is acyclic.

  • Grid Drawings of Five-Connected Plane Graphs

    Kazuyuki MIURA  

     
    PAPER-Graphs and Networks, Algorithms and Data Structures

      Pubricized:
    2022/02/16
      Vol:
    E105-A No:9
      Page(s):
    1228-1234

    A grid drawing of a plane graph G is a drawing of G on the plane so that all vertices of G are put on plane grid points and all edges are drawn as straight line segments between their endpoints without any edge-intersection. In this paper we give a linear-time algorithm to find a grid drawing of any given 5-connected plane graph G with five or more vertices on the outer face. The size of the drawing satisfies W + H≤n - 2, where n is the number of vertices in G, W is the width and H is the height of the grid drawing.

  • Speeding-Up Construction Algorithms for the Graph Coloring Problem

    Kazuho KANAHARA  Kengo KATAYAMA  Etsuji TOMITA  

     
    PAPER-Numerical Analysis and Optimization, Algorithms and Data Structures, Graphs and Networks

      Pubricized:
    2022/03/18
      Vol:
    E105-A No:9
      Page(s):
    1241-1251

    The Graph Coloring Problem (GCP) is a fundamental combinatorial optimization problem that has many practical applications. Degree of SATURation (DSATUR) and Recursive Largest First (RLF) are well known as typical solution construction algorithms for GCP. It is necessary to update the vertex degree in the subgraph induced by uncolored vertices when selecting vertices to be colored in both DSATUR and RLF. There is an issue that the higher the edge density of a given graph, the longer the processing time. The purposes of this paper are to propose a degree updating method called Adaptive Degree Updating (ADU for short) that improves the issue, and to evaluate the effectiveness of ADU for DSATUR and RLF on DIMACS benchmark graphs as well as random graphs having a wide range of sizes and densities. Experimental results show that the construction algorithms with ADU are faster than the conventional algorithms for many graphs and that the ADU method yields significant speed-ups relative to the conventional algorithms, especially in the case of large graphs with higher edge density.

  • Adaptive-ID Secure Hierarchical ID-Based Authenticated Key Exchange under Standard Assumptions without Random Oracles

    Ren ISHIBASHI  Kazuki YONEYAMA  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2022/03/24
      Vol:
    E105-A No:9
      Page(s):
    1252-1269

    Hierarchical ID-based authenticated key exchange (HID-AKE) is a cryptographic protocol to establish a common session key between parties with authentication based on their IDs with the hierarchical delegation of key generation functionality. All existing HID-AKE schemes are selective ID secure, and the only known standard model scheme relies on a non-standard assumption such as the q-type assumption. In this paper, we propose a generic construction of HID-AKE that is adaptive ID secure in the HID-eCK model (maximal-exposure-resilient security model) without random oracles. One of the concrete instantiations of our generic construction achieves the first adaptive ID secure HID-AKE scheme under the (standard) k-lin assumption in the standard model. Furthermore, it has the advantage that the computational complexity of pairing and exponentiation operations and the communication complexity do not depend on the depth of the hierarchy. Also, the other concrete instantiation achieves the first HID-AKE scheme based on lattices (i.e., post-quantum).

  • A Satisfiability Algorithm for Deterministic Width-2 Branching Programs Open Access

    Tomu MAKITA  Atsuki NAGAO  Tatsuki OKADA  Kazuhisa SETO  Junichi TERUYAMA  

     
    PAPER-Algorithms and Data Structures

      Pubricized:
    2022/03/08
      Vol:
    E105-A No:9
      Page(s):
    1298-1308

    A branching program is a well-studied model of computation and a representation for Boolean functions. It is a directed acyclic graph with a unique root node, some accepting nodes, and some rejecting nodes. Except for the accepting and rejecting nodes, each node has a label with a variable and each outgoing edge of the node has a label with a 0/1 assignment of the variable. The satisfiability problem for branching programs is, given a branching program with n variables and m nodes, to determine if there exists some assignment that activates a consistent path from the root to an accepting node. The width of a branching program is the maximum number of nodes at any level. The satisfiability problem for width-2 branching programs is known to be NP-complete. In this paper, we present a satisfiability algorithm for width-2 branching programs with n variables and cn nodes, and show that its running time is poly(n)·2(1-µ(c))n, where µ(c)=1/2O(c log c). Our algorithm consists of two phases. First, we transform a given width-2 branching program to a set of some structured formulas that consist of AND and Exclusive-OR gates. Then, we check the satisfiability of these formulas by a greedy restriction method depending on the frequency of the occurrence of variables.

  • Joint Design of Transmitting Waveform and Receiving Filter for Colocated MIMO Radar

    Ningkang CHEN  Ping WEI  Lin GAO  Huaguo ZHANG  Hongshu LIAO  

     
    PAPER-Communication Theory and Signals

      Pubricized:
    2022/03/14
      Vol:
    E105-A No:9
      Page(s):
    1330-1339

    This paper aims to design multiple-input multiple-output (MIMO) radar receiving weights and transmitting waveforms, in order to obtain better spatial filtering performance and enhance the robustness in the case of signal-dependent interference and jointly inaccurate estimated angles of target and interference. Generally, an alternate iterative optimization algorithm is proposed for the joint design problem. Specifically, the receiving weights are designed by the generalized eigenvalue decomposition of the matrix which contains the estimated information of the target and interference. As the cost function of the transmitting waveform design is fractional, the fractional optimization problem is first converted into a secondary optimization problem. Based on the proposed algorithm, a closed-form solution of the waveform is given using the alternating projection. At the analysis stage, in the presence of estimated errors under the environment of signal-dependent interference, a robust signal-to-interference and noise ratio (SINR) performance is obtained using a small amount of calculation with an iterative procedure. Numerical examples verify the effectiveness of the performances of the designed waveform in terms of the SINR, beampattern and pulse compression.

  • Experimental and Numerical Analysis of Ultrahigh-Speed Coherent Nyquist Pulse Transmission with Low-Nonlinearity Dispersion Compensator

    Kosuke KIMURA  Masato YOSHIDA  Keisuke KASAI  Toshihiko HIROOKA  Masataka NAKAZAWA  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2022/03/22
      Vol:
    E105-B No:9
      Page(s):
    1014-1022

    In this paper, we report an experimental and numerical analysis of ultrahigh-speed coherent Nyquist pulse transmission. First, we describe a low-nonlinearity dispersion compensator for ultrahigh-speed coherent Nyquist pulse transmission; it is composed of a chirped fiber Bragg grating (CFBG) and a liquid crystal on silicon (LCoS) device. By adopting CFBG instead of inverse dispersion fiber, the nonlinearity in a 160km transmission line was more than halved. Furthermore, by eliminating the group delay fluctuation of the CFBG with an LCoS device, the residual group delay was reduced to as low as 1.42ps over an 11nm bandwidth. Then, by using the transmission line with the newly constructed low-nonlinearity dispersion compensator, we succeeded in improving the BER performance of single-channel 15.3Tbit/s-160km transmission by one-third compared with that of a conventional dispersion-managed transmission line and obtained a spectral efficiency of 8.7bit/s/Hz. Furthermore, we numerically analyzed the BER performance of its Nyquist pulse transmission. The numerical results showed that the nonlinear impairment in the transmission line is the main factor limiting the transmission performance in a coherent Nyquist pulse transmission, which becomes more significant at higher baud rates.

  • LiNeS Cloud: A Web-Based Hands-On System for Network Security Classes with Intuitive and Seamless Operability and Light-Weight Responsiveness

    Yuichiro TATEIWA  

     
    PAPER-Educational Technology

      Pubricized:
    2022/06/08
      Vol:
    E105-D No:9
      Page(s):
    1557-1567

    We consider network security exercises where students construct virtual networks with User-mode Linux (UML) virtual machines and then execute attack and defense activities on these networks. In an older version of the exercise system, the students accessed the desktop screens of the remote servers running UMLs with Windows applications and then built networks by executing UML commands. However, performing the exercises remotely (e.g., due to the COVID-19 pandemic) resulted in difficulties due to factors such as the dependency of the work environment on specific operating systems, narrow-band networks, as well as issues in providing support for configuring UMLs. In this paper, a novel web-based hands-on system with intuitive and seamless operability and lightweight responsiveness is proposed in order to allow performing the considered exercises while avoiding the mentioned shortcomings. The system provides web pages for editing device layouts and cable connections by mouse operations intuitively, web pages connecting to UML terminals, and web pages for operating X clients running on UMLs. We carried out experiments for evaluating the proposed system on the usability, system performance, and quality of experience. The subjects offered positive assessments on the operability and no negative assessments on the responsiveness. As for command inputs in terminals, the response time was shorter and the traffic was much smaller in comparison with the older system. Furthermore, the exercises using nano required at least 16 kbps bandwidth and ones using wireshark required at least 2048 kbps bandwidth.

  • DRoF-Based Optical Video Re-Transmission System with Adaptive Combination Compression for Rain Attenuated Satellite Broadcast Signals Open Access

    Ryota SHIINA  Toshihito FUJIWARA  Tomohiro TANIGUCHI  Shunsuke SARUWATARI  Takashi WATANABE  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2022/04/06
      Vol:
    E105-B No:9
      Page(s):
    1023-1032

    In order to further reduce the transmission rate of multi-channel satellite broadcast signals, whose carrier-to-noise ratio (CNR fluctuates due to rainfall attenuation, we propose a novel digitized radio-over-fiber (DRoF) -based optical re-transmission system based on adaptive combination compression for ultra-high definition (UHD) broadcasting satellite (BS)/communications satellite (CS) broadcast signals. The proposed system reduces the optical re-transmission rate of BS/CS signals as much as possible while handling input CNR fluctuations. Therefore, the transmission rate of communication signals in time-division multiplexing (TDM) transmission is ensured, and network sharing of communication signals and broadcast signals via passive optical network (PON) is realized. Based on the ITU-R P.618-13 prediction model, an experimental evaluation is performed using estimates of the long-term statistics of attenuation due to rainfall. The attenuation is evaluated as a percentage of the time that long-term re-transmission service is available. It is shown that the proposed system is able to accommodate a wide range of rainfall attenuation and achieve a 99.988% time percentage for the duration of service provision. In order to show the rate reduction effect of the proposed system, the quantization bit reduction effect as a function of the input CNR, which depends on rainfall attenuation, is experimentally confirmed. Experiments show that service operation time of 99.978% can be achieved by 3-bit transmission. This means a 62.5% reduction in transmission rate is realized compared to conventional fixed quantization. Furthermore, the average quantization bit number in our system for service operation times is 3.000, indicating that most service operation times are covered by just 3-bit transmission.

  • Dispersion on Intervals

    Tetsuya ARAKI  Hiroyuki MIYATA  Shin-ichi NAKANO  

     
    PAPER-Algorithms and Data Structures

      Pubricized:
    2022/03/08
      Vol:
    E105-A No:9
      Page(s):
    1181-1186

    Given a set of n disjoint intervals on a line and an integer k, we want to find k points in the intervals so that the minimum pairwise distance of the k points is maximized. Intuitively, given a set of n disjoint time intervals on a timeline, each of which is a time span we are allowed to check something, and an integer k, which is the number of times we will check something, we plan k checking times so that the checks occur at equal time intervals as much as possible, that is, we want to maximize the minimum time interval between the k checking times. We call the problem the k-dispersion problem on intervals. If we need to choose exactly one point in each interval, so k=n, and the disjoint intervals are given in the sorted order on the line, then two O(n) time algorithms to solve the problem are known. In this paper we give the first O(n) time algorithm to solve the problem for any constant k. Our algorithm works even if the disjoint intervals are given in any (not sorted) order. If the disjoint intervals are given in the sorted order on the line, then, by slightly modifying the algorithm, one can solve the problem in O(log n) time. This is the first sublinear time algorithm to solve the problem. Also we show some results on the k-dispersion problem on disks, including an FPTAS.

541-560hit(16991hit)