The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] LD(1872hit)

861-880hit(1872hit)

  • Fine-Grained Power Gating Based on the Controlling Value of Logic Elements

    Lei CHEN  Takashi HORIYAMA  Yuichi NAKAMURA  Shinji KIMURA  

     
    PAPER-Logic Synthesis, Test and Verification

      Vol:
    E91-A No:12
      Page(s):
    3531-3538

    Leakage power consumption of logic elements has become a serious problem, especially in the sub-100-nanometer process. In this paper, a novel power gating approach by using the controlling value of logic elements is proposed. In the proposed method, sleep signals of the power-gated blocks are extracted completely from the original circuits without any extra logic element. A basic algorithm and a probability-based heuristic algorithm have been developed to implement the basic idea. The steady maximum delay constraint has also been introduced to handle the delay issues. Experiments on the ISCAS'85 benchmarks show that averagely 15-36% of logic elements could be power gated at a time for random input patterns, and 3-31% of elements could be stopped under the steady maximum delay constraints. We also show a power optimization method for AND/OR tree circuits, in which more than 80% of gates can be power-gated.

  • Histogram Equalization-Based Thresholding

    Soon Hak KWON  Hye Cheun JEONG  Suk Tae SEO  In Keun LEE  Chang Sik SON  

     
    LETTER-Image Recognition, Computer Vision

      Vol:
    E91-D No:11
      Page(s):
    2751-2753

    The thresholding results for gray level images depend greatly on the thresholding method applied. However, this letter proposes a histogram equalization-based thresholding algorithm that makes the thresholding results insensitive to the thresholding method applied. Experimental results are presented to demonstrate the effectiveness of the proposed thresholding algorithm.

  • A V-BLAST Detector Based on Modified Householder QRD over the Spatially Correlated Fading Channel

    Xiaorong JING  Zhengzhong ZHOU  Tianqi ZHANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:11
      Page(s):
    3727-3731

    We propose a feasible V-BLAST detector based on modified Householder QRD (M-H-QRD) over spatially correlated fading channel, which can almost match the performance of the V-BLAST algorithm with much lower complexity and better numerical stability. Compared to the sorted QRD (S-QRD) detector, the proposed detector requires a smaller minimum word-length to reach the same value of error floor for fixed-point (FP) numerical precision despite no significant performance difference for floating-point machine precision. All these advantages make it attractive when implemented using FP arithmetic.

  • Current Estimation on Multi-Layer Printed Circuit Board with Lumped Circuits by Near-Field Measurement

    Sumito KATO  Qiang CHEN  Kunio SAWAYA  

     
    LETTER-Electromagnetic Compatibility(EMC)

      Vol:
    E91-B No:11
      Page(s):
    3788-3791

    Current distribution on a 2-layer PCB with lumped circuits is estimated by measuring the near electric field. In this method, the current estimation model is made without considering the electrical parameters of lumped circuits. Experimental results are demonstrated and compared with the numerical results, confirming the validity of this method.

  • Density Evolution Analysis of Robustness for LDPC Codes over the Gilbert-Elliott Channel

    Manabu KOBAYASHI  Hideki YAGI  Toshiyasu MATSUSHIMA  Shigeichi HIRASAWA  

     
    PAPER-Coding Theory

      Vol:
    E91-A No:10
      Page(s):
    2754-2764

    In this paper, we analyze the robustness for low-density parity-check (LDPC) codes over the Gilbert-Elliott (GE) channel. For this purpose we propose a density evolution method for the case where LDPC decoder uses the mismatched parameters for the GE channel. Using this method, we derive the region of tuples of true parameters and mismatched decoding parameters for the GE channel, where the decoding error probability approaches asymptotically to zero.

  • MR-MIL: Manifold Ranking Based Multiple-Instance Learning for Automatic Image Annotation

    Yufeng ZHAO  Yao ZHAO  Zhenfeng ZHU  Jeng-Shyang PAN  

     
    LETTER-Image

      Vol:
    E91-A No:10
      Page(s):
    3088-3089

    A novel automatic image annotation (AIA) scheme is proposed based on multiple-instance learning (MIL). For a given concept, manifold ranking (MR) is first employed to MIL (referred as MR-MIL) for effectively mining the positive instances (i.e. regions in images) embedded in the positive bags (i.e. images). With the mined positive instances, the semantic model of the concept is built by the probabilistic output of SVM classifier. The experimental results reveal that high annotation accuracy can be achieved at region-level.

  • Next Generation S-DMB Using Hierarchical Modulation

    Cheon-In OH  

     
    LETTER-Broadcast Systems

      Vol:
    E91-B No:10
      Page(s):
    3409-3410

    In this paper, we propose a method to ensure larger number of channels than the current Satellite Digital Multimedia Broadcasting (S-DMB). For Backwards Compatibility (BC) for legacy subscribers, we apply Hierarchical Eight Phase Shift Keying (H-8PSK) modulation and Low Density Parity Check (LDPC) code. Using the newly proposed method, we simulate the performance deterioration of the existing stream and the performance of the new stream according to code rates of LDPC and deviation angle. As the result, we present the optimal deviation angle, which produces the least performance deterioration of the existing system and the best performance of the new system, drawing satisfiable improvement in transmission rate.

  • A Nearly Perfect Total-Field/Scattered-Field Boundary for the One-Dimensional CIP Method

    Yoshiaki ANDO  Hiroyuki SAITO  Masashi HAYAKAWA  

     
    PAPER-Electromagnetic Theory

      Vol:
    E91-C No:10
      Page(s):
    1677-1683

    A total-field/scattered-field (TF/SF) boundary which is commonly used in the finite-difference time-domain (FDTD) method to illuminate scatterers by plane waves, is developed for use in the constrained interpolation profile (CIP) method. By taking the numerical dispersion into account, the nearly perfect TF/SF boundary can be achieved, which allows us to calculate incident fields containing high frequency components without fictitious scattered fields. First of all, we formulate the TF/SF boundary in the CIP scheme. The numerical dispersion relation is then reviewed. Finally the numerical dispersion is implemented in the TF/SF boundary to estimate deformed incident fields. The performance of the nearly perfect TF/SF boundary is examined by measuring leaked fields in the SF region, and the proposed method drastically diminish the leakage compared with the simple TF/SF boundary.

  • BAT: Performance-Driven Crosstalk Mitigation Based on Bus-Grouping Asynchronous Transmission

    Guihai YAN  Yinhe HAN  Xiaowei LI  Hui LIU  

     
    PAPER-Integrated Electronics

      Vol:
    E91-C No:10
      Page(s):
    1690-1697

    Crosstalk delay within an on-chip bus can induce severe transmission performance penalties. The Bus-grouping Asynchronous Transmission (BAT) scheme is proposed to mitigate the performance degradation. Furthermore, considering the distinct spatial locality of transition distribution on some types of buses, we use the locality to optimize the BAT. In terms of the implementation, we propose the Differential Counter Cluster (DCC) synchronous mechanism to synchronize the data transmission, and the Delay Active Shielding (DAS) to protect some critical signals from crosstalk and optimize the routing area overhead. The BAT is scalable with the variation of bus width with little extra implementation complexity. The effectiveness of the BAT is evaluated by focusing on the on-chip buses of a superscalar microprocessor simulator using the SPEC CPU2000 benchmarks. When applied to a 64-bit on-chip instruction bus, the BAT scheme, compared with the conservative approach, Codec and Variable Cycle Transmission (DYN) approaches, improves performance by 55+%, 10+%, 30+%, respectively, at the expense of 13% routing area overhead.

  • Effective Acoustic Modeling for Pronunciation Quality Scoring of Strongly Accented Mandarin Speech

    Fengpei GE  Changliang LIU  Jian SHAO  Fuping PAN  Bin DONG  Yonghong YAN  

     
    PAPER-Speech and Hearing

      Vol:
    E91-D No:10
      Page(s):
    2485-2492

    In this paper we present our investigation into improving the performance of our computer-assisted language learning (CALL) system through exploiting the acoustic model and features within the speech recognition framework. First, to alleviate channel distortion, speaker-dependent cepstrum mean normalization (CMN) is adopted and the average correlation coefficient (average CC) between machine and expert scores is improved from 78.00% to 84.14%. Second, heteroscedastic linear discriminant analysis (HLDA) is adopted to enhance the discriminability of the acoustic model, which successfully increases the average CC from 84.14% to 84.62%. Additionally, HLDA causes the scoring accuracy to be more stable at various pronunciation proficiency levels, and thus leads to an increase in the speaker correct-rank rate from 85.59% to 90.99%. Finally, we use maximum a posteriori (MAP) estimation to tune the acoustic model to fit strongly accented test speech. As a result, the average CC is improved from 84.62% to 86.57%. These three novel techniques improve the accuracy of evaluating pronunciation quality.

  • Back- and Front-Interface Trap Densities Evaluation and Stress Effect of Poly-Si TFT

    Kenichi TAKATORI  Hideki ASADA  Setsuo KANEKO  

     
    INVITED PAPER

      Vol:
    E91-C No:10
      Page(s):
    1564-1569

    The polycrystalline silicon (poly-Si) TFT has two insulator interfaces between the polycrystalline silicon and front and back insulators. These interfaces have trap states, which affect the characteristics of poly-Si TFT. In the silicon-on-insulator (SOI) technology area, using the dual-gated, fully-depleted SOI MOSFET under the depleted back-channel condition, the back-interface trap density can be calculated through the front-channel threshold voltage and film thicknesses. The front-interface trap density is also evaluated changing the roles of both gates. This evaluation method for front- and back- interface trap densities is called the threshold-voltage method. To apply this threshold-voltage method to the "medium-thickness" poly-Si TFT, of which the channel is not fully depleted in normal single gate bias operation, the biases for both front and back gates are controlled to realize full depletion. Under the fully-depleted condition, the front- or back- threshold voltage of poly-Si TFT is carefully extracted by the second-derivative method changing back- and front- gate biases. We evaluated the front- and back- interface trap densities not only for normal operation but also under stress. To evaluate the bias and temperature stress effect, we used two types of samples, which are made by different processes. The evaluated front- and back- interface trap densities for both samples in initial state are around 51011 to 1.31012 cm-2eV-1, which are almost the same as the reported values. Applying bias and temperature stress shows the variation of these interface-trap densities. Samples with large shifts of the front-channel threshold voltage show large trap density variation. On the other hand, samples with small threshold voltage shifts show small trap density variation. The variation of the back-interface trap density during the stress application showed a correlation to the front-channel threshold voltage shift.

  • Investigation of Low-Damage Sputter-Deposition of ITO Films on Organic Emission Layer

    Hao LEI  Keisuke ICHIKAWA  Meihan WANG  Yoichi HOSHI  Takayuki UCHIDA  Yutaka SAWADA  

     
    PAPER

      Vol:
    E91-C No:10
      Page(s):
    1658-1662

    The damage to the organic layer of aluminum (III) bis(2-methyl-8-quninolinato)-4-phenylphenolate (BAlq) film was investigated on the basis of the change in photoluminescence (PL) intensity. To suppress the bombardment of the substrate with high-energy particles such as γ-electrons and negative oxygen ions, we used a facing-target sputtering (FTS) system. A marked reduction, however, of the PL intensity of the organic layer was still observed upon the deposition of an indium tin oxide (ITO) film on the organic film. To reduce this reduction, we proposed the insertion of a sector-shaped metal shield near the target electrode, and we showed its effectiveness in reducing the damage. This reduction of the damage is thought to be caused by the elimination of γ-electrons incident to the organic film surface escaping from the target area near the substrate side. We confirmed that high-energy electron bombardment leads to a significant reduction of PL intensity of the organic layer. This indicates that high-energy electrons incident to the organic film surface play a key role in the damage of the organic layer during the sputtering process.

  • Skin Color Segmentation Using Coarse-to-Fine Region on Normalized RGB Chromaticity Diagram for Face Detection

    Aryuanto SOETEDJO  Koichi YAMADA  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E91-D No:10
      Page(s):
    2493-2502

    This paper describes a new color segmentation based on a normalized RGB chromaticity diagram for face detection. Face skin is extracted from color images using a coarse skin region with fixed boundaries followed by a fine skin region with variable boundaries. Two newly developed histograms that have prominent peaks of skin color and non-skin colors are employed to adjust the boundaries of the skin region. The proposed approach does not need a skin color model, which depends on a specific camera parameter and is usually limited to a particular environment condition, and no sample images are required. The experimental results using color face images of various races under varying lighting conditions and complex backgrounds, obtained from four different resources on the Internet, show a high detection rate of 87%. The results of the detection rate and computation time are comparable to the well known real-time face detection method proposed by Viola-Jones [11],[12].

  • Multiple Scaling Extrinsic Soft Information for Improved Min-Sum Iterative Decoding of LDPC Codes

    Cheon Ho LEE  Young Chai KO  Jun HEO  

     
    LETTER-Coding Theory

      Vol:
    E91-A No:10
      Page(s):
    2874-2876

    This paper presents an improved min-sum iterative decoding scheme for regular and irregular LDPC codes. The proposed decoding scheme scales the extrinsic soft information from variable nodes to check. Different scaling factors are applied for iterations and the scaling factors are obtained by a simplified vector optimization method.

  • Detailed Evolution of Degree Distributions in Residual Graphs with Joint Degree Distributions

    Takayuki NOZAKI  Kenta KASAI  Tomoharu SHIBUYA  Kohichi SAKANIWA  

     
    PAPER-Coding Theory

      Vol:
    E91-A No:10
      Page(s):
    2737-2744

    Luby et al. derived evolution of degree distributions in residual graphs for irregular LDPC code ensembles. Evolution of degree distributions in residual graphs is important characteristic which is used for finite-length analysis of the expected block and bit error probability over the binary erasure channel. In this paper, we derive detailed evolution of degree distributions in residual graphs for irregular LDPC code ensembles with joint degree distributions.

  • A More Compact Representation of XTR Cryptosystem

    Masaaki SHIRASE  Dong-Guk HAN  Yasushi HIBINO  Howon KIM  Tsuyoshi TAKAGI  

     
    PAPER-Cryptography and Information Security

      Vol:
    E91-A No:10
      Page(s):
    2843-2850

    XTR is one of the most efficient public-key cryptosystems that allow us to compress the communication bandwidth of their ciphertext. The compact representation can be achieved by deploying a subgroup Fq2 of extension field Fq6, so that the compression ratio of XTR cryptosystem is 1/3. On the other hand, Dijk et al. proposed an efficient public-key cryptosystem using a torus over Fq30 whose compression ratio is 4/15. It is an open problem to construct an efficient public-key cryptosystem whose compression ratio is smaller than 4/15. In this paper we propose a new variant of XTR cryptosystem over finite fields with characteristic three whose compression ratio is 1/6. The key observation is that there exists a trace map from Fq6 to Fq in the case of characteristic three. Moreover, the cost of compression and decompression algorithm requires only about 1% overhead compared with the original XTR cryptosystem. Therefore, the proposed variant of XTR cryptosystem is one of the fastest public-key cryptosystems with the smallest compression ratio.

  • Efficient Secret Sharing Schemes Based on Unauthorized Subsets

    Kouya TOCHIKUBO  

     
    PAPER-Cryptography and Information Security

      Vol:
    E91-A No:10
      Page(s):
    2860-2867

    We propose two multiple assignment secret sharing schemes realizing general access structures. One is always more efficient than the secret sharing scheme proposed by Ito, Saito and Nishizeki [5] from the viewpoint of the number of shares distributed to each participant. The other is also always more efficient than the scheme I of [7].

  • Reduction Optimal Trinomials for Efficient Software Implementation of the ηT Pairing

    Toshiya NAKAJIMA  Tetsuya IZU  Tsuyoshi TAKAGI  

     
    PAPER

      Vol:
    E91-A No:9
      Page(s):
    2379-2386

    The ηT pairing for supersingular elliptic curves over GF(3m) has been paid attention because of its computational efficiency. Since most computation parts of the ηT pairing are GF(3m) multiplications, it is important to improve the speed of the multiplication when implementing the ηT pairing. In this paper we investigate software implementation of GF(3m) multiplication and propose using irreducible trinomials xm+axk+b over GF(3) such that k is a multiple of w, where w is the bit length of the word of targeted CPU. We call the trinomials "reduction optimal trinomials (ROTs)." ROTs actually exist for several m's and for typical values of w = 16 and 32. We list them for extension degrees m = 97, 167, 193, 239, 317, and 487. These m's are derived from security considerations. Using ROTs, we are able to implement efficient modulo operations (reductions) for GF(3m) multiplication compared with cases in which other types of irreducible trinomials are used (e.g., trinomials with a minimum k for each m). The reason for this is that for cases using ROTs, the number of shift operations on multiple precision data is reduced to less than half compared with cases using other trinomials. Our implementation results show that programs of reduction specialized for ROTs are 20-30% faster on 32-bit CPU and approximately 40% faster on 16-bit CPU compared with programs using irreducible trinomials with general k.

  • Distributed Computing Software Building-Blocks for Ubiquitous Computing Societies

    K.H. (Kane) KIM  

     
    INVITED PAPER

      Vol:
    E91-D No:9
      Page(s):
    2233-2242

    The steady approach of advanced nations toward realization of ubiquitous computing societies has given birth to rapidly growing demands for new-generation distributed computing (DC) applications. Consequently, economic and reliable construction of new-generation DC applications is currently a major issue faced by the software technology research community. What is needed is a new-generation DC software engineering technology which is at least multiple times more effective in constructing new-generation DC applications than the currently practiced technologies are. In particular, this author believes that a new-generation building-block (BB), which is much more advanced than the current-generation DC object that is a small extension of the object model embedded in languages C++, Java, and C#, is needed. Such a BB should enable systematic and economic construction of DC applications that are capable of taking critical actions with 100-microsecond-level or even 10-microsecond-level timing accuracy, fault tolerance, and security enforcement while being easily expandable and taking advantage of all sorts of network connectivity. Some directions considered worth pursuing for finding such BBs are discussed.

  • Near-Field to Far-Field Transformation for an Outdoor RCS Range

    Yoshio INASAWA  Shinji KURODA  Ken-ichi KAKIZAKI  Hitoshi NISHIKAWA  Naofumi YONEDA  Shigeru MAKINO  

     
    PAPER-Electromagnetic Theory

      Vol:
    E91-C No:9
      Page(s):
    1463-1471

    This paper presents the near-field to far-field transformation for an outdoor radar cross section (RCS) range. Direct measurement of the large actual target requires quite a long measurement range. The near-field to far-field RCS transformation method achieves the reduction of measurement range. However the non-uniformity of the incident electric field distribution on the target causes some errors in RCS prediction. We propose a novel near-field to far-field RCS transformation method that can be applied to an outdoor RCS measurement. The non-uniformity of the incident electric field distribution is successfully resolved by introducing the correction term of the ground bounce. We investigate the validity of the proposed method by the simulation and measurement.

861-880hit(1872hit)