The search functionality is under construction.

Keyword Search Result

[Keyword] LTE(1789hit)

41-60hit(1789hit)

  • Reinforced Tracker Based on Hierarchical Convolutional Features

    Xin ZENG  Lin ZHANG  Zhongqiang LUO  Xingzhong XIONG  Chengjie LI  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2022/03/10
      Vol:
    E105-D No:6
      Page(s):
    1225-1233

    In recent years, the development of visual tracking is getting better and better, but some methods cannot overcome the problem of low accuracy and success rate of tracking. Although there are some trackers will be more accurate, they will cost more time. In order to solve the problem, we propose a reinforced tracker based on Hierarchical Convolutional Features (HCF for short). HOG, color-naming and grayscale features are used with different weights to supplement the convolution features, which can enhance the tracking robustness. At the same time, we improved the model update strategy to save the time costs. This tracker is called RHCF and the code is published on https://github.com/z15846/RHCF. Experiments on the OTB2013 dataset show that our tracker can validly achieve the promotion of the accuracy and success rate.

  • Particle Filter Design Based on Reinforcement Learning and Its Application to Mobile Robot Localization

    Ryota YOSHIMURA  Ichiro MARUTA  Kenji FUJIMOTO  Ken SATO  Yusuke KOBAYASHI  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2022/01/28
      Vol:
    E105-D No:5
      Page(s):
    1010-1023

    Particle filters have been widely used for state estimation problems in nonlinear and non-Gaussian systems. Their performance depends on the given system and measurement models, which need to be designed by the user for each target system. This paper proposes a novel method to design these models for a particle filter. This is a numerical optimization method, where the particle filter design process is interpreted into the framework of reinforcement learning by assigning the randomnesses included in both models of the particle filter to the policy of reinforcement learning. In this method, estimation by the particle filter is repeatedly performed and the parameters that determine both models are gradually updated according to the estimation results. The advantage is that it can optimize various objective functions, such as the estimation accuracy of the particle filter, the variance of the particles, the likelihood of the parameters, and the regularization term of the parameters. We derive the conditions to guarantee that the optimization calculation converges with probability 1. Furthermore, in order to show that the proposed method can be applied to practical-scale problems, we design the particle filter for mobile robot localization, which is an essential technology for autonomous navigation. By numerical simulations, it is demonstrated that the proposed method further improves the localization accuracy compared to the conventional method.

  • Efficient Multi-Scale Feature Fusion for Image Manipulation Detection

    Yuxue ZHANG  Guorui FENG  

     
    LETTER-Information Network

      Pubricized:
    2022/02/03
      Vol:
    E105-D No:5
      Page(s):
    1107-1111

    Convolutional Neural Network (CNN) has made extraordinary progress in image classification tasks. However, it is less effective to use CNN directly to detect image manipulation. To address this problem, we propose an image filtering layer and a multi-scale feature fusion module which can guide the model more accurately and effectively to perform image manipulation detection. Through a series of experiments, it is shown that our model achieves improvements on image manipulation detection compared with the previous researches.

  • Deep Gaussian Denoising Network Based on Morphological Operators with Low-Precision Arithmetic

    Hikaru FUJISAKI  Makoto NAKASHIZUKA  

     
    PAPER-Image, Digital Signal Processing

      Pubricized:
    2021/11/08
      Vol:
    E105-A No:4
      Page(s):
    631-638

    This paper presents a deep network based on morphological filters for Gaussian denoising. The morphological filters can be applied with only addition, max, and min functions and require few computational resources. Therefore, the proposed network is suitable for implementation using a small microprocessor. Each layer of the proposed network consists of a top-hat transform, which extracts small peaks and valleys of noise components from the input image. Noise components are iteratively reduced in each layer by subtracting the noise components from the input image. In this paper, the extensions of opening and closing are introduced as linear combinations of the morphological filters for the top-hat transform of this deep network. Multiplications are only required for the linear combination of the morphological filters in the proposed network. Because almost all parameters of the network are structuring elements of the morphological filters, the feature maps and parameters can be represented in short bit-length integer form, which is suitable for implementation with single instructions, multiple data (SIMD) instructions. Denoising examples show that the proposed network obtains denoising results comparable to those of BM3D [1] without linear convolutions and with approximately one tenth the number of parameters of a full-scale deep convolutional neural network [2]. Moreover, the computational time of the proposed method using SIMD instructions of a microprocessor is also presented.

  • Design of Continuous Class-B/J Power Amplifier Based on Mirrored Lowpass Filter Matching Structure

    Guohua LIU  Huabang ZHONG  Cantianci GUO  Zhiqun CHENG  

     
    BRIEF PAPER-Electronic Circuits

      Pubricized:
    2021/10/21
      Vol:
    E105-C No:4
      Page(s):
    172-175

    This paper proposes a methodology for designing broadband class B/J power amplifier based on a mirrored lowpass filter matching structure. According to this filter theory, the impedance of this design method is mainly related to the cutoff frequency. Series inductors and shunt capacitors filter out high frequencies. The change of input impedance with frequency is small in the passband. Which can suppress higher harmonics and expand bandwidth. In order to confirm the validity of the design method, a broadband high-efficiency power amplifier in the 1.3 - 3.9GHz band is designed and fabricated. Measurement results show that the output power is greater than 40.5dBm, drain efficiency is 61.2% - 70.8% and the gain is greater than 10dB.

  • Anomaly Prediction for Wind Turbines Using an Autoencoder with Vibration Data Supported by Power-Curve Filtering

    Masaki TAKANASHI  Shu-ichi SATO  Kentaro INDO  Nozomu NISHIHARA  Hiroki HAYASHI  Toru SUZUKI  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/12/07
      Vol:
    E105-D No:3
      Page(s):
    732-735

    The prediction of the malfunction timing of wind turbines is essential for maintaining the high profitability of the wind power generation industry. Studies have been conducted on machine learning methods that use condition monitoring system data, such as vibration data, and supervisory control and data acquisition (SCADA) data to detect and predict anomalies in wind turbines automatically. Autoencoder-based techniques that use unsupervised learning where the anomaly pattern is unknown have attracted significant interest in the area of anomaly detection and prediction. In particular, vibration data are considered useful because they include the changes that occur in the early stages of a malfunction. However, when autoencoder-based techniques are applied for prediction purposes, in the training process it is difficult to distinguish the difference between operating and non-operating condition data, which leads to the degradation of the prediction performance. In this letter, we propose a method in which both vibration data and SCADA data are utilized to improve the prediction performance, namely, a method that uses a power curve composed of active power and wind speed. We evaluated the method's performance using vibration and SCADA data obtained from an actual wind farm.

  • A Spectral Analyzer Based on Dual Coprime DFT Filter Banks and Sub-Decimation

    Xueyan ZHANG  Libin QU  Zhangkai LUO  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2021/06/23
      Vol:
    E105-B No:1
      Page(s):
    11-20

    Coprime (pair of) DFT filter banks (coprime DFTFB), which process signals like a spectral analyzer in time domain, divides the power spectrum equally into MN bands by employing two DFT filter banks (DFTFBs) of size only M and N respectively, where M and N are coprime integers. With coprime DFTFB, frequencies in wide sense stationary (WSS) signals can be effectively estimated with a much lower sampling rates than the Nyquist rates. However, the imperfection of practical FIR filter and the correlation based detection mode give rise to two kinds of spurious peaks in power spectrum estimation, that greatly limit the application of coprime DFTFB. Through detailed analysis of the spurious peaks, this paper proposes a modified spectral analyzer based on dual coprime DFTFBs and sub-decimation, which not only depresses the spurious peaks, but also improves the frequency estimation accuracy. The mathematical principle proof of the proposed spectral analyzer is also provided. In discussion of simultaneous signals detection, an O-extended MN-band coprime DFTFB (OExt M-N coprime DFTFB) structure is naturally deduced, where M, N, and O are coprime with each other. The original MN-band coprime DFTFB (M-N coprime DFTFB) can be seen a special case of the OExt M-N coprime DFTFB with extending factor O equals ‘1’. In the numerical simulation section, BPSK signals with random carrier frequencies are employed to test the proposed spectral analyzer. The results of detection probability versus SNR curves through 1000 Monte Carlo experiments verify the effectiveness of the proposed spectrum analyzer.

  • Statistical-Mechanical Analysis of Adaptive Volterra Filter with the LMS Algorithm Open Access

    Kimiko MOTONAKA  Tomoya KOSEKI  Yoshinobu KAJIKAWA  Seiji MIYOSHI  

     
    PAPER-Digital Signal Processing

      Pubricized:
    2021/06/01
      Vol:
    E104-A No:12
      Page(s):
    1665-1674

    The Volterra filter is one of the digital filters that can describe nonlinearity. In this paper, we analyze the dynamic behaviors of an adaptive signal-processing system including the Volterra filter by a statistical-mechanical method. On the basis of the self-averaging property that holds when the tapped delay line is assumed to be infinitely long, we derive simultaneous differential equations in a deterministic and closed form, which describe the behaviors of macroscopic variables. We obtain the exact solution by solving the equations analytically. In addition, the validity of the theory derived is confirmed by comparison with numerical simulations.

  • Adaptive Normal State-Space Notch Digital Filters: Algorithm and Frequency-Estimation Bias Analysis

    Yoichi HINAMOTO  Shotaro NISHIMURA  

     
    PAPER-Digital Signal Processing

      Pubricized:
    2021/05/17
      Vol:
    E104-A No:11
      Page(s):
    1585-1592

    This paper investigates an adaptive notch digital filter that employs normal state-space realization of a single-frequency second-order IIR notch digital filter. An adaptive algorithm is developed to minimize the mean-squared output error of the filter iteratively. This algorithm is based on a simplified form of the gradient-decent method. Stability and frequency estimation bias are analyzed for the adaptive iterative algorithm. Finally, a numerical example is presented to demonstrate the validity and effectiveness of the proposed adaptive notch digital filter and the frequency-estimation bias analyzed for the adaptive iterative algorithm.

  • Deadlock-Free Symbolic Smith Controllers Based on Prediction for Nondeterministic Systems Open Access

    Masashi MIZOGUCHI  Toshimitsu USHIO  

     
    PAPER-Systems and Control

      Pubricized:
    2021/05/14
      Vol:
    E104-A No:11
      Page(s):
    1593-1602

    The Smith method has been used to control physical plants with dead time components, where plant states after the dead time is elapsed are predicted and a control input is determined based on the predicted states. We extend the method to the symbolic control and design a symbolic Smith controller to deal with a nondeterministic embedded system. Due to the nondeterministic transitions, the proposed controller computes all reachable plant states after the dead time is elapsed and determines a control input that is suitable for all of them in terms of a given control specification. The essence of the Smith method is that the effects of the dead time are suppressed by the prediction, however, which is not always guaranteed for nondeterministic systems because there may exist no control input that is suitable for all predicted states. Thus, in this paper, we discuss the existence of a deadlock-free symbolic Smith controller. If it exists, it is guaranteed that the effects of the dead time can be suppressed and that the controller can always issue the control input for any reachable state of the plant. If it does not exist, it is proved that the deviation from the control specification is essentially inevitable.

  • Constrained Design of FIR Filters with Sparse Coefficients

    Tatsuki ITASAKA  Ryo MATSUOKA  Masahiro OKUDA  

     
    PAPER

      Pubricized:
    2021/05/13
      Vol:
    E104-A No:11
      Page(s):
    1499-1508

    We propose an algorithm for the constrained design of FIR filters with sparse coefficients. In general filter design approaches, as the length of the filter increases, the number of multipliers used to construct the filter increases. This is a serious problem, especially in two-dimensional FIR filter designs. The FIR filter coefficients designed by the least-squares method with peak error constraint are optimal in the sense of least-squares within a given order, but not necessarily optimal in terms of constructing a filter that meets the design specification under the constraints on the number of coefficients. That is, a higher-order filter with several zero coefficients can construct a filter that meets the specification with a smaller number of multipliers. We propose a two-step approach to design constrained sparse FIR filters. Our method minimizes the number of non-zero coefficients while the frequency response of the filter that meets the design specification. It achieves better performance in terms of peak error than conventional constrained least-squares designs with the same or higher number of multipliers in both one-dimensional and two-dimensional filter designs.

  • S-to-X Band 360-Degree RF Phase Detector IC Consisting of Symmetrical Mixers and Tunable Low-Pass Filters

    Akihito HIRAI  Kazutomi MORI  Masaomi TSURU  Mitsuhiro SHIMOZAWA  

     
    PAPER

      Pubricized:
    2021/05/13
      Vol:
    E104-C No:10
      Page(s):
    559-567

    This paper demonstrates that a 360° radio-frequency phase detector consisting of a combination of symmetrical mixers and 45° phase shifters with tunable devices can achieve a low phase-detection error over a wide frequency range. It is shown that the phase detection error does not depend on the voltage gain of the 45° phase shifter. This allows the usage of tunable devices as 45° phase shifters for a wide frequency range with low phase-detection errors. The fabricated phase detector having tunable low-pass filters as the tunable device demonstrates phase detection errors lower than 2.0° rms in the frequency range from 3.0 GHz to 10.5 GHz.

  • Realization of Rectangular Frequency Characteristics by the Effects of a Low-Noise Amplifier and Flat Passband Bandpass Filter

    Tomohiro TSUKUSHI  Satoshi ONO  Koji WADA  

     
    PAPER

      Pubricized:
    2021/04/09
      Vol:
    E104-C No:10
      Page(s):
    568-575

    Realizing frequency rectangular characteristics using a planar circuit made of a normal conductor material such as a printed circuit board (PCB) is difficult. The reason is that the corners of the frequency response are rounded by the effect of the low unloaded quality factors of the resonators. Rectangular frequency characteristics are generally realized by a low-noise amplifier (LNA) with flat gain characteristics and a high-order bandpass filter (BPF) with resonators having high unloaded quality factors. Here, we use an LNA and a fourth-order flat passband BPF made of a PCB to realize the desired characteristics. We first calculate the signal and noise powers to confirm any effects from insertion loss caused by the BPF. Next, we explain the design and fabrication of an LNA, since no proper LNAs have been developed for this research. Finally, the rectangular frequency characteristics are shown by a circuit combining the fabricated LNA and the fabricated flat passband BPF. We show that rectangular frequency characteristics can be realized using a flat passband BPF technique.

  • Transmission Characteristics Control of 120 GHz-Band Bandstop Filter by Coupling Alignment-Free Lattice Pattern

    Akihiko HIRATA  Koichiro ITAKURA  Taiki HIGASHIMOTO  Yuta UEMURA  Tadao NAGATSUMA  Takashi TOMURA  Jiro HIROKAWA  Norihiko SEKINE  Issei WATANABE  Akifumi KASAMATSU  

     
    PAPER

      Pubricized:
    2021/04/08
      Vol:
    E104-C No:10
      Page(s):
    587-595

    In this paper, we present the transmission characteristics control of a 125 GHz-band split-ring resonator (SRR) bandstop filter by coupling an alignment-free lattice pattern. We demonstrate that the transmission characteristics of the SRR filter can be controlled by coupling the lattice pattern; however, the required accuracy of alignment between the SRR filter and lattice pattern was below 200 µm. Therefore, we designed an alignment-free lattice pattern whose unit cell size is different from that of the SRR unit cell. S21 of the SRR bandstop filter changes from -38.7 to -4.0 dB at 125 GHz by arranging the alignment-free lattice pattern in close proximity to the SRR stopband filter without alignment. A 10 Gbit/s data transmission can be achieved over a 125 GHz-band wireless link by setting the alignment-free lattice pattern substrate just above the SRR bandstop filter.

  • An Enhanced HDPC-EVA Decoder Based on ADMM

    Yujin ZHENG  Yan LIN  Zhuo ZHANG  Qinglin ZHANG  Qiaoqiao XIA  

     
    LETTER-Coding Theory

      Pubricized:
    2021/04/02
      Vol:
    E104-A No:10
      Page(s):
    1425-1429

    Linear programming (LP) decoding based on the alternating direction method of multipliers (ADMM) has proved to be effective for low-density parity-check (LDPC) codes. However, for high-density parity-check (HDPC) codes, the ADMM-LP decoder encounters two problems, namely a high-density check matrix in HDPC codes and a great number of pseudocodewords in HDPC codes' fundamental polytope. The former problem makes the check polytope projection extremely complex, and the latter one leads to poor frame error rates (FER) performance. To address these issues, we introduce the even vertex algorithm (EVA) into the ADMM-LP decoding algorithm for HDPC codes, named as HDPC-EVA. HDPC-EVA can reduce the complexity of the projection process and improve the FER performance. We further enhance the proposed decoder by the automorphism groups of codes, creating diversity in the parity-check matrix. The simulation results show that the proposed decoder is capable of cutting down the average decoding time for each iteration by 30%-60%, as well as achieving near maximum likelihood (ML) performance on some BCH codes.

  • Rolling Guidance Filter as a Clustering Algorithm

    Takayuki HATTORI  Kohei INOUE  Kenji HARA  

     
    LETTER

      Pubricized:
    2021/05/31
      Vol:
    E104-D No:10
      Page(s):
    1576-1579

    We propose a generalization of the rolling guidance filter (RGF) to a similarity-based clustering (SBC) algorithm which can handle general vector data. The proposed RGF-based SBC algorithm makes the similarities between data clearer than the original similarity values computed from the original data. On the basis of the similarity values, we assign cluster labels to data by an SBC algorithm. Experimental results show that the proposed algorithm achieves better clustering result than the result by the naive application of the SBC algorithm to the original similarity values. Additionally, we study the convergence of a unimodal vector dataset to its mean vector.

  • Anomaly Prediction for Wind Turbines Using an Autoencoder Based on Power-Curve Filtering

    Masaki TAKANASHI  Shu-ichi SATO  Kentaro INDO  Nozomu NISHIHARA  Hiroto ICHIKAWA  Hirohisa WATANABE  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/06/07
      Vol:
    E104-D No:9
      Page(s):
    1506-1509

    Predicting the malfunction timing of wind turbines is essential for maintaining the high profitability of the wind power generation business. Machine learning methods have been studied using condition monitoring system data, such as vibration data, and supervisory control and data acquisition (SCADA) data, to detect and predict anomalies in wind turbines automatically. Autoencoder-based techniques have attracted significant interest in the detection or prediction of anomalies through unsupervised learning, in which the anomaly pattern is unknown. Although autoencoder-based techniques have been proven to detect anomalies effectively using relatively stable SCADA data, they perform poorly in the case of deteriorated SCADA data. In this letter, we propose a power-curve filtering method, which is a preprocessing technique used before the application of an autoencoder-based technique, to mitigate the dirtiness of SCADA data and improve the prediction performance of wind turbine degradation. We have evaluated its performance using SCADA data obtained from a real wind-farm.

  • A Narrowband Active Noise Control System with a Frequency Estimator

    Lei WANG  Kean CHEN  Jian XU  

     
    PAPER-Noise and Vibration

      Pubricized:
    2021/03/17
      Vol:
    E104-A No:9
      Page(s):
    1284-1292

    A narrowband active noise control (NANC) system is very effective for controlling low-frequency periodic noise. A frequency mismatch (FM) with the reference signal will degrade the performance or even cause the system to diverge. To deal with an FM and obtain an accurate reference signal, NANC systems often employ a frequency estimator. Combining an autoregressive predictive filter with a variable step size (VSS) all-pass-based lattice adaptive notch filter (ANF), a new frequency estimation method is proposed that does not require prior information of the primary signal, and the convergence characteristics are much improved. Simulation results show that the designed frequency estimator has a higher accuracy than the conventional algorithm. Finally, hardware experiments are carried out to verify the noise reduction effect.

  • Detection Algorithms for FBMC/OQAM Spatial Multiplexing Systems

    Kuei-Chiang LAI  Chi-Jen CHEN  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2021/03/22
      Vol:
    E104-B No:9
      Page(s):
    1172-1187

    In this paper, we address the problem of detector design in severely frequency-selective channels for spatial multiplexing systems that adopt filter bank multicarrier based on offset quadrature amplitude modulation (FBMC/OQAM) as the communication waveforms. We consider decision feedback equalizers (DFEs) that use multiple feedback filters to jointly cancel the post-cursor components of inter-symbol interference, inter-antenna interference, and, in some configuration, inter-subchannel interference. By exploiting the special structures of the correlation matrix and the staggered property of the FBMC/OQAM signals, we obtain an efficient method of computing the DFE coefficients that requires a smaller number of multiplications than the linear equalizer (LE) and conventional DFE do. The simulation results show that the proposed detectors considerably outperform the LE and conventional DFE at moderate-to-high signal-to-noise ratios.

  • An Improved Method of LIME for a Low-Light Image Containing Bright Regions

    Seiichi KOJIMA  Noriaki SUETAKE  

     
    LETTER-Image

      Pubricized:
    2021/02/17
      Vol:
    E104-A No:8
      Page(s):
    1088-1092

    LIME is a method for low-light image enhancement. Though LIME significantly enhances the contrast in dark regions, the effect of contrast enhancement tends to be insufficient in bright regions. In this letter, we propose an improved method of LIME. In the proposed method, the contrast in bright regions are improved while maintaining the contrast enhancement effect in dark regions.

41-60hit(1789hit)