The search functionality is under construction.

Keyword Search Result

[Keyword] LTE(1789hit)

121-140hit(1789hit)

  • Statistical-Mechanics Approach to Theoretical Analysis of the FXLMS Algorithm Open Access

    Seiji MIYOSHI  Yoshinobu KAJIKAWA  

     
    PAPER-Digital Signal Processing

      Vol:
    E101-A No:12
      Page(s):
    2419-2433

    We analyze the behaviors of the FXLMS algorithm using a statistical-mechanical method. The cross-correlation between a primary path and an adaptive filter and the autocorrelation of the adaptive filter are treated as macroscopic variables. We obtain simultaneous differential equations that describe the dynamical behaviors of the macroscopic variables under the condition that the tapped-delay line is sufficiently long. The obtained equations are deterministic and closed-form. We analytically solve the equations to obtain the correlations and finally compute the mean-square error. The obtained theory can quantitatively predict the behaviors of computer simulations including the cases of both not only white but also nonwhite reference signals. The theory also gives the upper limit of the step size in the FXLMS algorithm.

  • A Novel Speech Enhancement System Based on the Coherence-Based Algorithm and the Differential Beamforming

    Lei WANG  Jie ZHU  

     
    LETTER-Speech and Hearing

      Pubricized:
    2018/08/31
      Vol:
    E101-D No:12
      Page(s):
    3253-3257

    This letter proposes a novel speech enhancement system based on the ‘L’ shaped triple-microphone. The modified coherence-based algorithm and the first-order differential beamforming are combined to filter the spatial distributed noise. The experimental results reveal that the proposed algorithm achieves significant performance in spatial filtering under different noise scenarios.

  • View Priority Based Threads Allocation and Binary Search Oriented Reweight for GPU Accelerated Real-Time 3D Ball Tracking

    Yilin HOU  Ziwei DENG  Xina CHENG  Takeshi IKENAGA  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2018/08/31
      Vol:
    E101-D No:12
      Page(s):
    3190-3198

    In real-time 3D ball tracking of sports analysis in computer vision technology, complex algorithms which assure the accuracy could be time-consuming. Particle filter based algorithm has a large potential to accelerate since the algorithm between particles has the chance to be paralleled in heterogeneous CPU-GPU platform. Still, with the target multi-view 3D ball tracking algorithm, challenges exist: 1) serial flowchart for each step in the algorithm; 2) repeated processing for multiple views' processing; 3) the low degree of parallelism in reweight and resampling steps for sequential processing. On the CPU-GPU platform, this paper proposes the double stream system flow, the view priority based threads allocation, and the binary search oriented reweight. Double stream system flow assigns tasks which there is no data dependency exists into different streams for each frame processing to achieve parallelism in system structure level. View priority based threads allocation manipulates threads in multi-view observation task. Threads number is view number multiplied by particles number, and with view priority assigning, which could help both memory accessing and computing achieving parallelism. Binary search oriented reweight reduces the time complexity by avoiding to generate cumulative distribution function and uses an unordered array to implement a binary search. The experiment is based on videos which record the final game of an official volleyball match (2014 Inter-High School Games of Men's Volleyball held in Tokyo Metropolitan Gymnasium in Aug. 2014) and the test sequences are taken by multiple-view system which is made of 4 cameras locating at the four corners of the court. The success rate achieves 99.23% which is the same as target algorithm while the time consumption has been accelerated from 75.1ms/frame in CPU environment to 3.05ms/frame in the proposed system which is 24.62 times speed up, also, it achieves 2.33 times speedup compared with basic GPU implemented work.

  • The Development of a High Accuracy Algorithm Based on Small Sample Size for Fingerprint Location in Indoor Parking Lot

    Weibo WANG  Jinghuan SUN  Ruiying DONG  Yongkang ZHENG  Qing HUA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2018/06/13
      Vol:
    E101-B No:12
      Page(s):
    2479-2486

    Indoor fingerprint location based on WiFi in large-scale indoor parking lots is more and more widely employed for vehicle lookup. However, the challenge is to ensure the location functionality because of the particularity and complexities of the indoor parking lot environment. To reduce the need to deploy of reference points (RPs) and the offline sampling workload, a partition-fitting fingerprint algorithm (P-FP) is proposed. To improve the location accuracy of the target, the PS-FP algorithm, a sampling importance resampling (SIR) particle filter with threshold based on P-FP, is further proposed. Firstly, the entire indoor parking lot is partitioned and the environmental coefficients of each partitioned section are gained by using the polynomial fitting model. To improve the quality of the offline fingerprint database, an error characteristic matrix is established using the difference between the fitting values and the actual measured values. Thus, the virtual RPs are deployed and C-means clustering is utilized to reduce the amount of online computation. To decrease the fluctuation of location coordinates, the SIR particle filter with a threshold setting is adopted to optimize the location coordinates. Finally, the optimal threshold value is obtained by comparing the mean location error. Test results demonstrated that PS-FP could achieve high location accuracy with few RPs and the mean location error is only about 0.7m. The cumulative distribution function (CDF) show that, using PS-FP, 98% of location errors are within 2m. Compared with the weighted K-nearest neighbors (WKNN) algorithm, the location accuracy by PS-FP exhibit an 84% improvement.

  • Low-Power Fifth-Order Butterworth OTA-C Low-Pass Filter with an Impedance Scaler for Portable ECG Applications

    Shuenn-Yuh LEE  Cheng-Pin WANG  Chuan-Yu SUN  Po-Hao CHENG  Yuan-Sun CHU  

     
    PAPER-Electronic Circuits

      Vol:
    E101-C No:12
      Page(s):
    942-952

    This study proposes a multiple-output differential-input operational transconductance amplifier-C (MODI OTA-C) filter with an impedance scaler to detect cardiac activity. A ladder-type fifth-orderButterworth low-pass filter with a large time constant and low noise is implemented to reduce coefficient sensitivity and address signal distortion. Moreover, linearized MODI OTA structures with reduced transconductance and impedance scaler circuits for noise reduction are used to achieve a wide dynamic range (DR). The OTA-based circuit is operated in the subthreshold region at a supply voltage of 1 V to reduce the power consumption of the wearable device in long-term use. Experimental results of the filter with a bandwidth of 250 Hz reveal that DR is 57.6 dB, and the harmonic distortion components are below -59 dB. The power consumption of the filter, which is fabricated through a TSMC 0.18 µm CMOS process, is lower than 390 nW, and the active area is 0.135 mm2.

  • A Low-Complexity Path Delay Searching Method in Sparse Channel Estimation for OFDM Systems

    Kee-Hoon KIM  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2018/05/11
      Vol:
    E101-B No:11
      Page(s):
    2297-2303

    By exploiting the inherent sparsity of wireless channels, the channel estimation in an orthogonal frequency division multiplexing (OFDM) system can be cast as a compressed sensing (CS) problem to estimate the channel more accurately. Practically, matching pursuit algorithms such as orthogonal matching pursuit (OMP) are used, where path delays of the channel is guessed based on correlation values for every quantized delay with residual. This full search approach requires a predefined grid of delays with high resolution, which induces the high computational complexity because correlation values with residual at a huge number of grid points should be calculated. Meanwhile, the correlation values with high resolution can be obtained by interpolation between the correlation values at a low resolution grid. Also, the interpolation can be implemented with a low pass filter (LPF). By using this fact, in this paper we substantially reduce the computational complexity to calculate the correlation values in channel estimation using CS.

  • Adaptive Object Tracking with Complementary Models

    Peng GAO  Yipeng MA  Chao LI  Ke SONG  Yan ZHANG  Fei WANG  Liyi XIAO  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2018/08/06
      Vol:
    E101-D No:11
      Page(s):
    2849-2854

    Most state-of-the-art discriminative tracking approaches are based on either template appearance models or statistical appearance models. Despite template appearance models have shown excellent performance, they perform poorly when the target appearance changes rapidly. In contrast, statistic appearance models are insensitive to fast target state changes, but they yield inferior tracking results in challenging scenarios such as illumination variations and background clutters. In this paper, we propose an adaptive object tracking approach with complementary models based on template and statistical appearance models. Both of these models are unified via our novel combination strategy. In addition, we introduce an efficient update scheme to improve the performance of our approach. Experimental results demonstrate that our approach achieves superior performance at speeds that far exceed the frame-rate requirement on recent tracking benchmarks.

  • Dose-Volume Histogram Evaluations Using Sparsely Measured Radial Data from Two-Dimensional Dose Detectors

    Yasushi ONO  Katsuya KONDO  Kazu MISHIBA  

     
    LETTER-Image

      Vol:
    E101-A No:11
      Page(s):
    1993-1998

    Intensity modulated radiation therapy (IMRT), which irradiates doses to a target organ, calculates the irradiation dose using the radiation treatment planning system (RTPS). The irradiation quality is ensured by verifying that the dose distribution planned by RTPS is the same as the data measured by two-dimensional (2D) detectors. Since an actual three-dimensional (3D) distribution of irradiated dose spreads complicatedly, it is different from that of RTPS. Therefore, it is preferable to evaluate by using not only RTPS, but also actual irradiation dose distribution. In this paper, in order to perform a dose-volume histogram (DVH) evaluation of the irradiation dose distribution, we propose a method of correcting the dose distribution of RTPS by using sparsely measured radial data from 2D dose detectors. And we perform a DVH evaluation of irradiation dose distribution and we show that the proposed method contributes to high-precision DVH evaluation. The experimental results show that the estimates are in good agreement with the measured data from the 2D detectors and that the peak signal to noise ratio and the structural similarity indexes of the estimates are more accurate than those of RTPS. Therefore, we present the possibility of an evaluation of the actual irradiation dose distribution using measured data in a limited observation direction.

  • Single Image Haze Removal Using Hazy Particle Maps

    Geun-Jun KIM  Seungmin LEE  Bongsoon KANG  

     
    LETTER-Image

      Vol:
    E101-A No:11
      Page(s):
    1999-2002

    Hazes with various properties spread widely across flat areas with depth continuities and corner areas with depth discontinuities. Removing haze from a single hazy image is difficult due to its ill-posed nature. To solve this problem, this study proposes a modified hybrid median filter that performs a median filter to preserve the edges of flat areas and a hybrid median filter to preserve depth discontinuity corners. Recovered scene radiance, which is obtained by removing hazy particles, restores image visibility using adaptive nonlinear curves for dynamic range expansion. Using comparative studies and quantitative evaluations, this study shows that the proposed method achieves similar or better results than those of other state-of-the-art methods.

  • Optimization of the Window Function in an Adaptive Noise Canceller

    Yusuke MATSUBARA  Naohiro TODA  

     
    PAPER-Digital Signal Processing

      Vol:
    E101-A No:11
      Page(s):
    1854-1860

    Adaptive noise cancellation using adaptive filters is a known method for removing noise that interferes with signal measurements. The adaptive noise canceller performs filtering based on the current situation through a windowing process. The shape of the window function determines the tracking performance of the adaptive noise canceller with respect to the fluctuation of the property of the unknown system that noise (reference signal) passes. However, the shape of the window function in the field of adaptive filtering has not yet been considered in detail. This study mathematically treats the effect of the window function on the adaptive noise canceller and proposes an optimization method for the window function in situations where offline processing can be performed, such as biomedical signal measurements. We also demonstrate the validity of the optimized window function through numerical experiments.

  • Pilot Cluster ICI Suppression in OFDM Systems Based on Coded Symbols

    Yong DING  Shan OUYANG  Yue-Lei XIE  Xiao-Mao CHEN  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2018/04/27
      Vol:
    E101-B No:11
      Page(s):
    2320-2330

    When trying to estimate time-varying multipath channels by applying a basis expansion model (BEM) in orthogonal frequency division multiplexing (OFDM) systems, pilot clusters are contaminated by inter-carrier interference (ICI). The pilot cluster ICI (PC-ICI) degrades the estimation accuracy of BEM coefficients, which degrades system performance. In this paper, a PC-ICI suppression scheme is proposed, in which two coded symbols defined as weighted sums of data symbols are inserted on both sides of each pilot cluster. Under the assumption that the channel has Flat Doppler spectrum, the optimized weight coefficients are obtained by an alternating iterative optimization algorithm, so that the sum of the PC-ICI generated by the encoded symbols and the data symbols is minimized. By approximating the optimized weight coefficients, they are independent of the channel tap power. Furthermore, it is verified that the proposed scheme is robust to the estimation error of the normalized Doppler frequency offset and can be applied to channels with other types of Doppler spectra. Numerical simulation results show that, compared with the conventional schemes, the proposed scheme achieves significant improvements in the performance of PC-ICI suppression, channel estimation and system bit-error-ratio (BER).

  • High Speed and Narrow-Bandpass Liquid Crystal Filter for Real-Time Multi Spectral Imaging Systems

    Kohei TERASHIMA  Kazuhiro WAKO  Yasuyuki FUJIHARA  Yusuke AOYAGI  Maasa MURATA  Yosei SHIBATA  Shigetoshi SUGAWA  Takahiro ISHINABE  Rihito KURODA  Hideo FUJIKAKE  

     
    BRIEF PAPER

      Vol:
    E101-C No:11
      Page(s):
    897-900

    We have developed the high speed bandpass liquid crystal filter with narrow full width at half maximum (FWHM) of 5nm for real-time multi spectral imaging systems. We have successfully achieved short wavelength-switching time of 30ms by the optimization of phase retardation of thin liquid crystal cells.

  • Efficient Texture Creation Based on Random Patches in Database and Guided Filter

    Seok Bong YOO  Mikyong HAN  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2018/08/01
      Vol:
    E101-D No:11
      Page(s):
    2840-2843

    As the display resolution increases, an effective image upscaling technique is required for recent displays such as an ultra-high-definition display. Even though various image super-resolution algorithms have been developed for the image upscaling, they still do not provide the excellent performance in the ultra-high-definition display. This is because the texture creation capability in the algorithms is not sufficient. Hence, this paper proposes an efficient texture creation algorithm for enhancing the texture super-resolution performance. For the texture creation, we build a database with random patches in the off-line processing and we then synthesize fine textures by employing guided filter in the on-line real-time processing, based on the database. Experimental results show that the proposed texture creation algorithm provides sharper and finer textures compared with the existing state-of-the-art algorithms.

  • Accurate Scale Adaptive and Real-Time Visual Tracking with Correlation Filters

    Jiatian PI  Shaohua ZENG  Qing ZUO  Yan WEI  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2018/07/27
      Vol:
    E101-D No:11
      Page(s):
    2855-2858

    Visual tracking has been studied for several decades but continues to draw significant attention because of its critical role in many applications. This letter handles the problem of fixed template size in Kernelized Correlation Filter (KCF) tracker with no significant decrease in the speed. Extensive experiments are performed on the new OTB dataset.

  • Trajectory Estimation of the Players and Shuttlecock for the Broadcast Badminton Videos

    Yen-Ju LIN  Shiuh-Ku WENG  

     
    LETTER-Image

      Vol:
    E101-A No:10
      Page(s):
    1730-1734

    To track the players and shuttlecock in broadcast badminton video is a challenge, especially for tracking the small size and fast moving shuttlecock. There are many situations that may cause occlusion or misdetection. In this paper, a method is proposed to track players and shuttlecock in broadcast badminton videos. We apply adaptive Kalman filter, trajectory confidence estimation and confidence-update (Location Similarity and Relative Motion Relation, RMR) to improve the accuracy of object trajectories. In our experiments, the proposed method significantly enhance the tracking success rate of players and shuttlecock.

  • Design of Dual-Band SHF BPF with Lower Band Reconfigurability and Direct Parallel-Connected Configuration

    Yuki KADA  Yasushi YAMAO  

     
    PAPER

      Vol:
    E101-C No:10
      Page(s):
    775-783

    For more flexible and efficient use of radio spectrum, reconfigurable RF devices have important roles in the future wireless systems. In 5G mobile communications, concurrent multi-band operation using new SHF bands is considered. This paper presents a new configuration of dual-band SHF BPF consisting of a low SHF three-bit reconfigurable BPF and a high SHF BPF. The proposed dual-band BPF employs direct parallel connection without additional divider/combiner to reduce circuit elements and simplify the BPF. In order to obtain a good isolation between two passbands while achieving a wide center frequency range in the low SHF BPF, input/output impedances and external Qs of BPFs are analyzed and feedbacked to the design. A high SHF BPF design method with tapped transmission line resonators and lumped-element coupling is also presented to make the BPF compact. Two types of prototypes; all inductor-coupled dual-band BPF and C-L-C coupled dual-band BPF were designed and fabricated. Both prototypes have low SHF reconfigurable center frequency range from 3.5 to 5 GHz as well as high SHF center frequency of 8.5 GHz with insertion loss below 2.0 dB.

  • Twofold Correlation Filtering for Tracking Integration

    Wei WANG  Weiguang LI  Zhaoming CHEN  Mingquan SHI  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2018/07/10
      Vol:
    E101-D No:10
      Page(s):
    2547-2550

    In general, effective integrating the advantages of different trackers can achieve unified performance promotion. In this work, we study the integration of multiple correlation filter (CF) trackers; propose a novel but simple tracking integration method that combines different trackers in filter level. Due to the variety of their correlation filter and features, there is no comparability between different CF tracking results for tracking integration. To tackle this, we propose twofold CF to unify these various response maps so that the results of different tracking algorithms can be compared, so as to boost the tracking performance like ensemble learning. Experiment of two CF methods integration on the data sets OTB demonstrates that the proposed method is effective and promising.

  • Simulation of Metal Droplet Sputtering and Molten Pool on Copper Contact under Electric Arc

    Kai BO  Xue ZHOU  Guofu ZHAI  Mo CHEN  

     
    PAPER

      Vol:
    E101-C No:9
      Page(s):
    691-698

    The micro-mechanism of molten pool and metal droplet sputtering are significant to the material erosion caused by breaking or making arcs especially for high-power switching devices. In this paper, based on Navier-Stokes equations for incompressible viscous fluid and potential equation for electric field, a 2D axially symmetric simplified hydrodynamic model was built to describe the formation of the molten metal droplet sputtering and molten pool under arc spot near electrode region. The melting process was considered by the relationship between melting metal volumetric percentage and temperature, a free surface of liquid metal deformation was solved by coupling moving mesh and the automatic re-meshing. The simulated metal droplet sputtering and molten pool behaviors are presented by the temperature and velocity distribution sequences. The influence mechanism of pressure distribution and heat flux on the formation of molten pool and metal droplet sputtering has been analyzed according to the temperature distribution and sputtering angles. Based on the simulation results, we can distinguish two different models of the molten metal droplet sputtering process: edge ejection and center ejection. Moreover, a new explanation is proposed based on calculated results with arc spot pressure distribution in the form of both unimodal and bimodal. It shows that the arc spot pressure distribution plays an important role in the metal droplet ejected from molten pool, the angle of the molten jet drop can be decreased along with the increment of the arc spot pressure.

  • Application of Novel Metallic PhC Resonators in Theoretical Design of THz BPFs

    Chun-Ping CHEN  Kazuki KANAZAWA  Zejun ZHANG  Tetsuo ANADA  

     
    BRIEF PAPER

      Vol:
    E101-C No:8
      Page(s):
    655-659

    This paper presents a theoretical design of novel THz bandpass filters composed of M-PhC (metallic-photonic-crystal) point-defect-cavities (PDCs) with a centrally-loaded-rod. After a brief review of the properties of the recently-proposed M-PhC PDCs, two inline-type bandpass filters are synthesized in terms of the coupling matrix theory. The FDTD simulation results of the synthesized filters are in good agreement with the theoretical ones, which confirms the validity of the proposed filters' structures and the design scheme.

  • Tighter Generalization Bounds for Matrix Completion Via Factorization Into Constrained Matrices

    Ken-ichiro MORIDOMI  Kohei HATANO  Eiji TAKIMOTO  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2018/05/18
      Vol:
    E101-D No:8
      Page(s):
    1997-2004

    We prove generalization error bounds of classes of low-rank matrices with some norm constraints for collaborative filtering tasks. Our bounds are tighter, compared to known bounds using rank or the related quantity only, by taking the additional L1 and L∞ constraints into account. Also, we show that our bounds on the Rademacher complexity of the classes are optimal.

121-140hit(1789hit)