The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] NIC(2720hit)

681-700hit(2720hit)

  • Convergence Analysis of TAPPM Decoders for Deep Space Optical Channels

    Nikhil JOSHI  Adrish BANERJEE  Jeong Woo LEE  

     
    LETTER-Communication Theory and Signals

      Vol:
    E95-A No:8
      Page(s):
    1435-1438

    The convergence behavior of turbo APPM (TAPPM) decoding is analyzed by using a three-dimensional extrinsic information transfer (EXIT) chart and the decoding trajectory. The signal-to-noise ratio (SNR) threshold, below which iterative decoding fails to converge, is predicted by using the 3-D EXIT chart analysis. Bit error rate performances of TAPPM schemes validate the EXIT-chart-based SNR threshold predictions. Outer constituent codes of TAPPM are chosen to show the lowest SNR threshold with the aid of EXIT chart analysis.

  • Metal-Cavity Nanolasers and NanoLEDs Open Access

    Shun Lien CHUANG  Chi-Yu NI  Chien-Yao LU  Akira MATSUDAIRA  

     
    INVITED PAPER

      Vol:
    E95-C No:7
      Page(s):
    1235-1243

    We present the theory and experiment of metal-cavity nanolasers and nanoLEDs flip-chip bonded to silicon under electrical injection at room temperature. We first review the recent progress on micro- and nanolasers. We then present the design rule and our theoretical model. We show the experimental results of our metal-cavity surface-emitting microlasers and compare with our theoretical results showing an excellent agreement. We found the important contributions of the nonradiative recombination currents including Auger recombination, surface recombination, and leakage currents. Finally, experimental demonstration of electrical injection nanoLEDs toward subwavelength nanoscale lasers is reported.

  • Communication Reliability Support with the Minimum Number of Totally Transmitted Packets in Wireless Sensor Networks

    Sungkee NOH  Euisin LEE  Soochang PARK  Seungmin OH  Sang-Ha KIM  

     
    LETTER-Network

      Vol:
    E95-B No:7
      Page(s):
    2455-2458

    Recently, a flexible loss recovery scheme, called Active Caching (AC) has been proposed to accomplish a Desired Communication Reliability (DCR) about the whole data packets at a source depending on the various applications. However, since AC does not consider the packet delivery rate of each wireless link on multi-hop forwarding paths, it increases the number of totally transmitted packets to achieve a DCR and thus grows the energy consumption of sensor nodes. Thus, this letter proposes a novel recovery scheme which can minimize the number of totally transmitted packets while satisfying a DCR. By geometric programming, the proposed scheme allocates an optimized one-hop packet transmission rate of each wireless link on the multi-hop forwarding path.

  • Switching Characteristics in Variable-Index Arrayed Waveguides Using Thin-Film Heater

    Satoshi YANAGI  Yosuke MURAKAMI  Yuki YAMAZAKI  Kazuhiko SHIMOMURA  

     
    PAPER

      Vol:
    E95-C No:7
      Page(s):
    1265-1271

    We have demonstrated switching characteristics in a wavelength switch based on multiple GaInAs/InP quantum wells. It consisted of straight arrayed waveguides with a linearly varying refractive index distribution. The refractive index can be changed via the thermo-optic (TO) effect. Using a Ti/Au thin-film heater to generate the TO effect, we realized four-port switching at four demultiplexed wavelengths. In addition, by changing the structure of the heater from rectangular to triangular, the power consumption for four-port switching was reduced by half.

  • NADH Sensing Using Neutral Red Functionalized Carbon Nanotube/Plasma-Polymerized Film Composite Electrode

    Tatsuya HOSHINO  Hitoshi MUGURUMA  

     
    BRIEF PAPER-Organic Molecular Electronics

      Vol:
    E95-C No:7
      Page(s):
    1300-1303

    A novel fabrication approach for electrochemical sensing of nicotinamide adenine dinucleotide (NADH) using neutral red (NR) functinalized carbon nanotube/plasma-polymerized film composite electrode is reported. The configuration of sensing electrode was NR-functionalized CNTs sandwiched between two acetonitrile PPFs on sputtered gold thin film. The NR as an electron transfer mediator shuttles the electron from the CNT to gold electrode. Due to the synergistic effect between NR and CNT, the resulting electrode showed the lower detection potential and the larger sensitivity (current) than that of NR or CNT alone. The sensor revealed a sensitivity of 29 µA mM-1 cm-2 at +0.15 V vs. Ag/AgCl, linear dynamic range of 0.08–4.2 mM, a detection limit of 18 µM at S/N=3, and a response time of 7 s.

  • An Enhanced Secure Authentication Scheme with Anonymity for Wireless Environments

    Woongryul JEON  Jeeyeon KIM  Junghyun NAM  Youngsook LEE  Dongho WON  

     
    LETTER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E95-B No:7
      Page(s):
    2505-2508

    As anonymity increasingly becomes a necessary and legitimate aim in many applications, a number of anonymous authentication schemes have been suggested over the years. Among the many schemes is Lee and Kwon's password-based authentication scheme for wireless environments. Compared with previous schemes, Lee and Kwon's scheme not only improves anonymity by employing random temporary IDs but also provides user-friendliness by allowing human-memorable passwords. In this letter, we point out that Lee and Kwon's scheme, despite its many merits, is vulnerable to off-line password guessing attacks and a forgery attack. In addition, we show how to eliminate these vulnerabilities.

  • Precoder Design and Capacity Analysis for Multi-Antenna Full-Duplex Relay

    Young-Woo KWAK  Jong-Ho LEE  Yong-Hwa KIM  Seong-Cheol KIM  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E95-B No:7
      Page(s):
    2446-2450

    In this letter, a precoding design for a multiple-input multiple-output (MIMO) full-duplex relay (FDR) system is proposed. For this system, mitigating the self-interference imposed by the transmit antennas on the receive antennas in the same relay station is crucial for improving the performance of the FDR system. The precoding scheme designed in this study uses block-diagonalization (BD). Using this precoding scheme, FDR capacity analysis is performed in the MIMO downlink relay system. Numerical results on system performance in terms of capacity are shown and discussed.

  • High-Temperature Operation of Photonic-Crystal Lasers for On-Chip Optical Interconnection Open Access

    Koji TAKEDA  Tomonari SATO  Takaaki KAKITSUKA  Akihiko SHINYA  Kengo NOZAKI  Chin-Hui CHEN  Hideaki TANIYAMA  Masaya NOTOMI  Shinji MATSUO  

     
    PAPER

      Vol:
    E95-C No:7
      Page(s):
    1244-1251

    To meet the demand for light sources for on-chip optical interconnections, we demonstrate the continuous-wave (CW) operation of photonic-crystal (PhC) nanocavity lasers at up to 89.8 by using InP buried heterostructures (BH). The wavelength of a PhC laser can be precisely designed over a wide range exceeding 100 nm by controlling the lattice constant of the PhC. The dynamic responses of the PhC laser are also demonstrated with a 3-dB bandwidth of over 7.0 GHz at 66.2. These results reveal the laser's availability for application to wavelength division multiplexed (WDM) optical interconnection on CMOS chips. We discuss the total bandwidths of future on-chip optical interconnections, and report the capabilities of PhC lasers.

  • Cryptanalysis of an Improved User Authentication Scheme with User Anonymity for Wireless Communications

    Eun-Jun YOON  Kee-Young YOO  

     
    LETTER-Information Network

      Vol:
    E95-D No:6
      Page(s):
    1687-1689

    A user identity anonymity is an important property for roaming services. In 2011, Kang et al. proposed an improved user authentication scheme that guarantees user anonymity in wireless communications. This letter shows that Kang et al.'s improved scheme still cannot provide user anonymity as they claimed.

  • Long-Range Asynchronous On-Chip Link Based on Multiple-Valued Single-Track Signaling

    Naoya ONIZAWA  Atsushi MATSUMOTO  Takahiro HANYU  

     
    PAPER-Circuit Theory

      Vol:
    E95-A No:6
      Page(s):
    1018-1029

    We have developed a long-range asynchronous on-chip data-transmission link based on multiple-valued single-track signaling for a highly reliable asynchronous Network-on-Chip. In the proposed signaling, 1-bit data with control information is represented by using a one-digit multi-level signal, so serial data can be transmitted asynchronously using only a single wire. The small number of wires alleviates the routing complexity of wiring long-range interconnects. The use of current-mode signaling makes it possible to transmit data at high speed without buffers or repeaters over a long interconnect wire because of the low-voltage swing of signaling, and it leads to low-latency data transmission. We achieve a latency of 0.45 ns, a throughput of 1.25 Gbps, and energy dissipation of 0.58 pJ/bit with a 10-mm interconnect wire under a 0.13 µm CMOS technology. This represents an 85% decrease in latency, a 150% increase in throughput, and a 90% decrease in energy dissipation compared to a conventional serial asynchronous data-transmission link.

  • A Suboptimal Power-Saving Transmission Scheme in Multiple Component Carrier Networks

    Yao-Liang CHUNG  Zsehong TSAI  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E95-B No:6
      Page(s):
    2144-2147

    Power consumption due to transmissions in base stations (BSs) has been a major contributor to communication-related CO2 emissions. A power optimization model is developed in this study with respect to radio resource allocation and activation in a multiple Component Carrier (CC) environment. We formulate and solve the power-minimization problem of the BS transceivers for multiple-CC networks with carrier aggregation, while maintaining the overall system and respective users' utilities above minimum levels. The optimized power consumption based on this model can be viewed as a lower bound of that of other algorithms employed in practice. A suboptimal scheme with low computation complexity is proposed. Numerical results show that the power consumption of our scheme is much better than that of the conventional one in which all CCs are always active, if both schemes maintain the same required utilities.

  • Cooperative Multiuser Relay Communication with Superposition Coding

    Roderick Jaehoon WHANG  Sherlie PORTUGAL  Intae HWANG  Huaping LIU  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E95-B No:6
      Page(s):
    2133-2136

    Cooperative relaying, while effective in mitigating fading effects, might reduce the overall network throughput since its overhead such as additional time slot and frequency band can be significant. In order to overcome this problem, this paper proposes a superposition coding based cooperative relay scheme to provide reliable transmission with little or no overhead. This scheme exploits the superimposed messages for users in the network to achieve the simultaneous transmission of two or more independent data streams. This scheme reduces the number of transmission phases to the same as that of conventional cooperative relay schemes. The symbol error performance of the proposed scheme is analyzed and simulated.

  • Design and Fabrication of Large Scale Micro-LED Arrays and Silicon Driver for OEIC Devices

    Sang-Baie SHIN  Ko-Ichiro IIJIMA  Hiroshi OKADA  Sho IWAYAMA  Akihiro WAKAHARA  

     
    PAPER

      Vol:
    E95-C No:5
      Page(s):
    898-903

    In this paper, we designed and fabricated large scale micro-light-emitting-diode (LED) arrays and silicon driver for single chip device for realizing as prototypes of heterogeneous optoelectronic integrated circuits (OEICs). The large scale micro-LED arrays were separated by a dry etching method from mesa structure to 16,384 pixels of 128 128, each with a size of 15 µm in radius. Silicon driver was designed the additional bonding pad on each driving transistor for bonding with micro-LED arrays. Fabricated micro-LED arrays and driver were flip-chip bonded using anisotropic conductive adhesive.

  • Information Networks Secured by the Laws of Physics Open Access

    Laszlo B. KISH  Ferdinand PEPER  

     
    INVITED PAPER

      Vol:
    E95-B No:5
      Page(s):
    1501-1507

    In this paper, we survey the state of the art of the secure key exchange method that is secured by the laws of classical statistical physics, and involves the Kirchhoff's law and the generalized Johnson noise equation, too. We discuss the major characteristics and advantages of these schemes especially in comparison with quantum encryption, and analyze some of the technical challenges of its implementation, too. Finally, we outline some ideas about how to use already existing and currently used wire lines, such as power lines, phone lines, internet lines to implement unconditionally secure information networks.

  • Analysis of Spin-Polarized Current Using InSb/AlInSb Resonant Tunneling Diode

    Masanari FUJITA  Mitsufumi SAITO  Michihiko SUHARA  

     
    PAPER

      Vol:
    E95-C No:5
      Page(s):
    871-878

    In this paper, we analyze current-voltage characteristics of InSb/AlInSb triple-barrier resonant tunneling diodes (TBRTDs) with spin-splitting under zero magnetic fields. The InSb has very small effective mass, thus we can obtain large spin-splitting by Rashba spin-orbit interaction due to asymmetric InSb/AlInSb quantum wells. In our model, broadening of each resonant tunneling level and spin-splitting energy can be considered to calculate spin-polarized resonant tunneling current.

  • Supervised Single-Channel Speech Separation via Sparse Decomposition Using Periodic Signal Models

    Makoto NAKASHIZUKA  Hiroyuki OKUMURA  Youji IIGUNI  

     
    PAPER-Engineering Acoustics

      Vol:
    E95-A No:5
      Page(s):
    853-866

    In this paper, we propose a method for supervised single-channel speech separation through sparse decomposition using periodic signal models. The proposed separation method employs sparse decomposition, which decomposes a signal into a set of periodic signals under a sparsity penalty. In order to achieve separation through sparse decomposition, the decomposed periodic signals have to be assigned to the corresponding sources. For the assignment of the periodic signal, we introduce clustering using a K-means algorithm to group the decomposed periodic signals into as many clusters as the number of speakers. After the clustering, each cluster is assigned to its corresponding speaker using preliminarily learnt codebooks. Through separation experiments, we compare our method with MaxVQ, which performs separation on the frequency spectrum domain. The experimental results in terms of signal-to-distortion ratio show that the proposed sparse decomposition method is comparable to the frequency domain approach and has less computational costs for assignment of speech components.

  • Analytical Model of Nano-Electromechanical (NEM) Nonvolatile Memory Cells

    Boram HAN  Woo Young CHOI  

     
    BRIEF PAPER

      Vol:
    E95-C No:5
      Page(s):
    914-916

    The fringe field effects of nano-electromechanical (NEM) nonvolatile memory cells have been investigated analytically for the accurate evaluation of NEM memory cells. As the beam width is scaled down, fringe field effect becomes more severe. It has been observed that pull-in, release and hysteresis voltage decrease more than our prediction. Also, the fringe field on cell characteristics has been discussed.

  • Spectral Magnitude Adjustment for MCLT-Based Acoustic Data Transmission

    Hwan Sik YUN  Kiho CHO  Nam Soo KIM  

     
    LETTER-Information Network

      Vol:
    E95-D No:5
      Page(s):
    1523-1526

    Acoustic data transmission is a technique which embeds data in a sound wave imperceptibly and detects it at a receiver. The data are embedded in an original audio signal and transmitted through the air by playing back the data-embedded audio using a loudspeaker. At the receiver, the data are extracted from the received audio signal captured by a microphone. In our previous work, we proposed an acoustic data transmission system designed based on phase modification of the modulated complex lapped transform (MCLT) coefficients. In this paper, we propose the spectral magnitude adjustment (SMA) technique which not only enhances the quality of the data-embedded audio signal but also improves the transmission performance of the system.

  • Iterative MAP Receiver Employing Forward Channel Estimation via Message Passing for OFDM over Fast Fading Channels

    Kazushi MURAOKA  Kazuhiko FUKAWA  Hiroshi SUZUKI  Satoshi SUYAMA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E95-B No:5
      Page(s):
    1770-1783

    This paper proposes an iterative maximum a posteriori (MAP) receiver for orthogonal frequency division multiplexing (OFDM) mobile communications under fast-fading conditions. The previous work in [21] developed a MAP receiver based on the expectation-maximization (EM) algorithm employing the differential model, which can allow correlated time-variation of channel impulse responses. In order to make such a MAP receiver more robust against time-variant channels, this paper proposes two new message-passing algorithms derived from factor graphs; subcarrier removal and partial turbo processing. The subcarrier removal estimates the channel frequency response by using all subcarriers other than the targeted subcarrier. Such channel estimate can be efficiently calculated by removing information on the targeted subcarrier from the estimate of the original EM algorithm that uses all the subcarriers. This modification can avoid the repetitive use of incorrectly detected signals for the channel estimation. On the other hand, the partial turbo processing performs symbol-by-symbol channel decoding by using a symbol interleaver. Owing to this process, the current channel estimate, which is more accurate due to the decoding gain, can be used as the initial channel estimate for the next symbol. Computer simulations under fast multipath fading conditions demonstrate that the subcarrier removal and the partial turbo processing can improve the error floor and the convergence speed, respectively, compared to the conventional MAP receiver.

  • Throughput Optimization in Rateless Coded Cooperative Relay Networks

    Ashish JAMES  A.S. MADHUKUMAR  Fumiyuki ADACHI  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E95-B No:5
      Page(s):
    1810-1814

    By performing the encoding operation on several message packets, rateless coding in cooperative networks has the potential risk of processing information already available to the receivers. In this paper, the intermediate packet decodability of rateless codes is exploited to mitigate such redundant packet processing at the cooperating nodes. The message packets that are already decoded at the receivers are eliminated from further processing by harnessing the back channel (from receiver to transmitter) for feedback. This reduces the required number of transmissions and optimizes the throughput of the network.

681-700hit(2720hit)