The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] NIC(2720hit)

641-660hit(2720hit)

  • Orientation Imaging of Single Molecule at Various Ambient Conditions

    Toshiki YAMADA  Takahiro KAJI  Akira OTOMO  

     
    BRIEF PAPER

      Vol:
    E96-C No:3
      Page(s):
    381-382

    After brief introduction of our new microscope unit with an immersion objective and ionic liquid used as a refractive index matching medium, in this paper, we describe the studies on dipole orientation imaging of single molecules under high vacuum conditions as one of the important applications of our microscope.

  • 40-Gb/s and Highly Accurate All-Optical Intensity Limiter Driving Low-Power-Consumption Based on Self-Phase Modulation by Using Numerical Simulation

    Kentaro KAWANISHI  Kazuyoshi ITOH  Tsuyoshi KONISHI  

     
    BRIEF PAPER

      Vol:
    E96-C No:2
      Page(s):
    220-222

    We report a 40-Gb/s and highly accurate intensity limiter with a single Erbium-Doped Fiber Amplifier (EDFA) for low-power-consumption driving intensity limiting. The intensity limiter based on self-phase modulation with an appropriate pre-chirping procedure makes it possible, which provides a highly accurate limiting of less than 0.01 dB. We fed 40-Gb/s signals with 2.69 dB intensity fluctuation and 4.7 dB improvement on the receiver sensitivity was obtained for a bit error rate of 10-9 by using a numerical simulation.

  • 100-GS/s 5-Bit Real-Time Optical Quantization for Photonic Analog-to-Digital Conversion

    Takema SATOH  Kazuyoshi ITOH  Tsuyoshi KONISHI  

     
    BRIEF PAPER

      Vol:
    E96-C No:2
      Page(s):
    223-226

    We report a trial of 100-GS/s optical quantization with 5-bit resolution using soliton self-frequency shift (SSFS) and spectral compression. We confirm that 100-GS/s 5-bit optical quantization is realized to quantize a 5.0-GHz sinusoid electrical signal in simulation. In order to experimentally verify the possibility of 100-GS/s 5-bit optical quantization, we execute 5-bit optical quantization by using two sampled signals with 10-ps intervals.

  • High-Speed Full-Duplex Optical Wireless Communication System with Single Channel Imaging Receiver for Personal Area Networks

    Ke WANG  Ampalavanapillai NIRMALATHAS  Christina LIM  Efstratios SKAFIDAS  

     
    PAPER

      Vol:
    E96-C No:2
      Page(s):
    180-186

    In this paper, we propose a high-speed full-duplex optical wireless communication system using a single channel imaging receiver for personal area network applications. This receiver is composed of an imaging lens, a small sensitive-area photodiode, and a 2-aixs actuator and it can reject most of the background light. Compared with the previously proposed system with single wide field-of-view (FOV) non-imaging receiver, the coverage area at 12.5 Gb/s is extended by > 20%. Furthermore, since the rough location information of the user is available in our proposed system, instead of searching for the focused light spot over a large area on the focal plane of the lens, only a small possible area needs to be scanned. In addition, by pre-setting a proper comparison threshold when searching for the focused light spot, the time needed for searching can be further reduced. Proof-of-concept experiments have been carried out and the results show that with this partial searching algorithm and pre-set threshold, better performance is achieved.

  • QoS Control and QoE Assessment in Multi-Sensory Communications with Haptics Open Access

    Pingguo HUANG  Yutaka ISHIBASHI  

     
    INVITED PAPER

      Vol:
    E96-B No:2
      Page(s):
    392-403

    Multi-sensory communications with haptics attract a number of researchers in recent years. To provide services of the communications with high realistic sensations, the researchers focus on the quality of service (QoS) control, which keeps as high quality as possible, and the quality of experience (QoE) assessment, which is carried out to investigate the influence on user perception and to verify the effectiveness of QoS control. In this paper, we report the present status of studies on multi-sensory communications with haptics. Then, we divide applications of the communications into applications in virtual environments and those in real environments, and we mainly describe collaborative work and competitive work in each of the virtual and real environments. We also explain QoS control which is applied to the applications and QoE assessment carried out in them. Furthermore, we discuss the future directions of studies on multi-sensory communications.

  • Analysis of Two-Dimensional Photonic Crystal Optical Power Splitter with Microcavity

    Yoshihiro NAKA  Yusui NAKAMURA  

     
    BRIEF PAPER-Periodic Structures

      Vol:
    E96-C No:1
      Page(s):
    73-76

    An efficient 12 optical power splitter constructed by a two-dimensional photonic crystal has been analyzed using the finite difference time domain (FD-TD) method. The power splitter has a microcavity which is coupled to an input and two output waveguides. We have confirmed that all optical power is transmitted into output waveguides due to resonant tunneling caused by the microcavity.

  • Effect of Frequency Offset in OFDM Systems with Distributed Beamforming

    Youchan JEON  Haesoo KIM  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E96-B No:1
      Page(s):
    371-374

    Three synchronization issues, i.e., phase, frequency, and symbol time, have to be properly controlled to achieve distributed beamforming gain. In orthogonal frequency division multiplexing (OFDM) systems, frequency offset in cooperating signals is more important than other synchronization issues since it results in SNR degradation as well as inter-carrier interference (ICI). In this paper, the impact of frequency offset in distributed beamforming is analyzed for OFDM systems. ICI resulting from frequency offset between cooperating signals is also investigated and approximated. Performance degradation due to frequency offset is shown with various numbers of cooperating signals and offset values. We show that frequency offset between cooperating signals is critical in OFDM systems since it leads to interference from the other subcarriers as well as power loss in the desired signal.

  • Tensor Rank and Strong Quantum Nondeterminism in Multiparty Communication

    Marcos VILLAGRA  Masaki NAKANISHI  Shigeru YAMASHITA  Yasuhiko NAKASHIMA  

     
    PAPER-Fundamentals of Information Systems

      Vol:
    E96-D No:1
      Page(s):
    1-8

    In this paper we study quantum nondeterminism in multiparty communication. There are three (possibly) different types of nondeterminism in quantum computation: i) strong, ii) weak with classical proofs, and iii) weak with quantum proofs. Here we focus on the first one. A strong quantum nondeterministic protocol accepts a correct input with positive probability and rejects an incorrect input with probability 1. In this work we relate strong quantum nondeterministic multiparty communication complexity to the rank of the communication tensor in the Number-On-Forehead and Number-In-Hand models. In particular, by extending the definition proposed by de Wolf to nondeterministic tensor-rank (nrank), we show that for any boolean function f when there is no prior shared entanglement between the players, 1) in the Number-On-Forehead model the cost is upper-bounded by the logarithm of nrank(f); 2) in the Number-In-Hand model the cost is lower-bounded by the logarithm of nrank(f). Furthermore, we show that when the number of players is o(log log n), we have NQP BQP for Number-On-Forehead communication.

  • Reliable Data Transmission for Resonant-Type Wireless Power Transfer

    Shinpei NOGUCHI  Mamiko INAMORI  Yukitoshi SANADA  

     
    PAPER-Digital Signal Processing

      Vol:
    E96-A No:1
      Page(s):
    298-303

    Wireless power transfer research has been receiving a great deal of attention in recent years. In resonant-type wireless power transfer, energy is transferred via LC resonant circuits. However, system performance is dependent on the circuit components. To transfer power efficiently and safely, information, such as frequency, required power and element values, need to be transmitted reliably in the system. This paper investigates data communication using orthogonal frequency division multiplexing (OFDM) modulation in resonant-type wireless power transfer systems. The equivalent circuit used in the transmitting and receiving antennas is a band pass filter (BPF) and its bandwidth is evaluated through circuit simulations and experimental measurements. Numerical results obtained through computer simulation show that the bit error rate (BER) performance is affected by the splitting resonant frequency.

  • Low-Temperature Thermionic Emission from Diamond Micropowders with Sharp Edges

    Tomomi YOSHIMOTO  Tatsuo IWATA  

     
    BRIEF PAPER-Semiconductor Materials and Devices

      Vol:
    E96-C No:1
      Page(s):
    132-134

    The thermionic emission properties of diamond micropowders were investigated. The thermionic emission current was observed at a low temperature of 702 K, and a work function of approximately 1.97 eV was obtained. Band bending in diamond micropowders induced by an applied electric field had a considerable influence on decreasing the work function.

  • Outage Analysis of Cognitive Spectrum Sharing for Two-Way Relaying Schemes with Opportunistic Relay Selection over i.n.i.d. Rayleigh Fading Channels

    Tran Trung DUY  Hyung Yun KONG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E96-B No:1
      Page(s):
    348-351

    In this letter, we analyze the outage performance of cognitive spectrum sharing in two-way relaying systems. We derive expressions of outage probability for the primary and secondary network over independent but not necessarily identically distributed (i.n.i.d.) Rayleigh fading channels. Monte Carlo simulations are presented to verify the theoretical analyses.

  • A High-Speed Low-Complexity Time-Multiplexing Reed-Solomon-Based FEC Architecture for Optical Communications

    Jeong-In PARK  Hanho LEE  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E95-A No:12
      Page(s):
    2424-2429

    A high-speed low-complexity time-multiplexing Reed-Solomon-based forward error correction architecture based on the pipelined truncated inversionless Berlekamp-Massey algorithm is presented in this paper. The proposed architecture has very high speed and very low hardware complexity compared with conventional Reed-Solomon-based forward error correction architectures. Hardware complexity is improved by employing a truncated inverse Berlekamp-Massey algorithm. A high-speed and high-throughput data rate is facilitated by employing a three-parallel processing pipelining technique and modified syndrome computation block. The time-multiplexing method for pipelined truncated inversionless Berlekamp-Massey architecture is used in the parallel Reed-Solomon decoder to reduce hardware complexity. The proposed architecture has been designed and implemented with 90-nm CMOS technology. Synthesis results show that the proposed 16-channel Reed-Solomon-based forward error correction architecture requires 417,600 gates and can operate at 640 MHz to achieve a throughput of 240 Gb/s. The proposed architecture can be readily applied to Reed-Solomon-based forward error correction devices for next-generation short-reach optical communications.

  • Anonymous Authentication Scheme without Verification Table for Wireless Environments

    Ryoichi ISAWA  Masakatu MORII  

     
    LETTER-Cryptography and Information Security

      Vol:
    E95-A No:12
      Page(s):
    2488-2492

    Lee and Kwon proposed an anonymous authentication scheme based on Zhu et al.'s scheme. However, Lee et al.'s scheme has two disadvantages. Firstly, their scheme is vulnerable to off-line dictionary attacks. An adversary can guess a user password from the user's login messages eavesdropped by the adversary. Secondly, an authentication server called a home agent requires a verification table, which violates the original advantage of Zhu et al.'s scheme. That is, it increases the key management costs of the home agent. In this letter, we show the weaknesses of Lee et al.'s scheme and another three existing schemes. Then, we propose a new secure scheme without the verification table, while providing security for off-line dictionary attacks and other attacks except for a certain type of combined attacks.

  • A Hybrid Photonic Burst-Switched Interconnection Network for Large-Scale Manycore System

    Quanyou FENG  Huanzhong LI  Wenhua DOU  

     
    PAPER-Computer Architecture

      Vol:
    E95-D No:12
      Page(s):
    2908-2918

    With the trend towards increasing number of cores, for example, 1000 cores, interconnection network in manycore chips has become the critical bottleneck for providing communication infrastructures among on-chip cores as well as to off-chip memory. However, conventional on-chip mesh topologies do not scale up well because remote cores are generally separated by too many hops due to the small-radix routers within these networks. Moreover, projected scaling of electrical processor-memory network appears unlikely to meet the enormous demand for memory bandwidth while satisfying stringent power budget. Fortunately, recent advances in 3D integration technology and silicon photonics have provided potential solutions to these challenges. In this paper, we propose a hybrid photonic burst-switched interconnection network for large-scale manycore processors. We embed an electric low-diameter flattened butterfly into 3D stacking layers using integer linear programming, which results in a scalable low-latency network for inter-core packets exchange. Furthermore, we use photonic burst switching (PBS) for processor-memory network. PBS is an adaptation of optical burst switching for chip-scale communication, which can significantly improve the power efficiency by leveraging sub-wavelength, bandwidth-efficient optical switching. Using our physically-accurate network-level simulation environment, we examined the system feasibility and performances. Simulation results show that our hybrid network achieves up to 25% of network latency reduction and up to 6 times energy savings, compared to conventional on-chip mesh network and optical circuit-switched memory access scheme.

  • The Cooperative Mobile Positioning Based on the Received Signal Strength for Heterogeneous Environments

    Reza SAADAT  Maryam ASADI  

     
    LETTER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E95-B No:12
      Page(s):
    3929-3932

    We focus on the cooperative mobile positioning based on the received signal strength for heterogeneous environments. We use the least squares method to estimate the channel attenuation coefficients, and hyperbolic method to determine the position. For increasing accuracy, we use different weighting to the adjacent users' data in the attenuation coefficients estimation.

  • Post-Compensation Technique for Carrier Superposed Satellite Channel Including Nonlinear TWTA

    Takehiro ISHIGURO  Takao HARA  Minoru OKADA  

     
    PAPER

      Vol:
    E95-B No:11
      Page(s):
    3420-3427

    For effective use of the frequency band, carrier superposing (common band) technique has been introduced to satellite communication systems. On the other hand, satellite's TWTA (Traveling Wave Tube Amplifier) should be operated near its saturation level for power efficiency. However, the TWTA nonlinearity characteristics around that level causes interference in carrier superposing systems. Therefore in this paper, a post-compensation technique for TWTA nonlinear distortion is introduced and verified for practical use in a carrier superposed Point to Point satellite communication system which adopts interference canceller. Simulation results show that it is possible to reduce the bit error rate degradation over the entire range, especially at nonlinear operating point.

  • Novel Channel Allocation Algorithm Using Spectrum Control Technique for Effective Usage of both Satellite Transponder Bandwidth and Satellite Transmission Power

    Katsuya NAKAHIRA  Jun-ichi ABE  Jun MASHINO  Takatoshi SUGIYAMA  

     
    PAPER

      Vol:
    E95-B No:11
      Page(s):
    3393-3403

    This paper proposes a new channel allocation algorithm for satellite communication systems. The algorithm is based on a spectrum division transmission technique as well as a spectrum compression transmission technique that we have developed in separate pieces of work. Using these techniques, the algorithm optimizes the spectrum bandwidth and a MODCOD (modulation and FEC error coding rate) scheme to balance the usable amount of satellite transponder bandwidth and satellite transmission power. Moreover, it determines the center frequency and bandwidth of each divided subspectra depending on the unused bandwidth of the satellite transponder bandwidth. As a result, the proposed algorithm enables flexible and effective usage of satellite resources (bandwidth and power) in channel allocations and thus enhances satellite communication (SATCOM) system capacity.

  • Effective Design of Transmit Weights for Nonregenerative Multiuser MIMO Relay Downlink System

    Cong LI  Yasunori IWANAMI  Ryota YAMADA  Naoki OKAMOTO  

     
    PAPER-Mobile Information Network

      Vol:
    E95-A No:11
      Page(s):
    1894-1903

    In this paper, we focus on the cancellation of interference among Destination Users (DU's) and the improvement of achievable sum rate of the nonregenerative multiuser Multiple-Input Multiple-Output (MIMO) relay downlink system. A novel design method of transmit weight is proposed to successively eliminate the interference among DU's, each of which is equipped with multiple receive antennas. We firstly investigate the transmit weight design for the Amplify-and-Forward (AF) relay scheme where the Relay Station (RS) just retransmits the received signals from Base Station (BS), then extend it to the joint design scheme of transmit weights at the both BS and RS. In the proposed joint design scheme, through the comparison of lower bound of achievable rate, an effective DU selection algorithm is proposed to generate the transmit weight at the RS and obtain the multiuser diversity. Dirty Paper Coding (DPC) technique is employed to remove the interference among DU's and ensures the achievable rate of downlink. Theoretical derivation and simulation results demonstrate the effectiveness of the proposed scheme in obtaining the achievable rate performance and BER characteristics.

  • An Information Sampling System for UWB Communications

    Benzhou JIN  Sheng ZHANG  Jian PAN  Xiaokang LIN  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E95-B No:11
      Page(s):
    3613-3616

    Without recourse to the Shannon-Nyquist sampling theorem, a novel information sampling (IS) concept is proposed for ultra-wideband (UWB) communications. To implement IS, a random pre-coding system architecture is designed and system performance is studied. Simulation results from one of UWB channel models show that the proposed system is effective to detect UWB signals with a low-sampling-rate analog-to-digital converter (ADC) at the receiver. Moreover, it can operate in a regime of heavy inter-symbol interference (ISI).

  • A Generalized Construction Scheme of a Zero-Correlation Zone Sequence Set with a Wide Inter-Subset Zero-Correlation Zone

    Takafumi HAYASHI  Takao MAEDA  Shinya MATSUFUJI  

     
    LETTER-Sequences

      Vol:
    E95-A No:11
      Page(s):
    1931-1936

    The present paper introduces a new approach to the construction of a sequence set with a zero-correlation zone (ZCZ), which is referred to as a ZCZ sequence set. The proposed sequence construction generates a ZCZ sequence set from a ZCZ sequence set. The proposed method can generate an almost optimal ZCZ sequence set, the member size of which approaches the theoretical bound, when an almost optimal ZCZ sequence is used for the sequence construction. The proposed sequence set consists of NO subsets, where a ZCZ sequence set Z(LO, NO, ZO is used in sequence construction. The correlation function of the sequences of a pair of different subsets, referred to as the inter-subset correlation function, has a ZCZ with a width that is about times that of the correlation function of sequences of the same subset (intra-subset correlation function) for integers Λ ≥ 1, T, and m ≥ 0. Wide inter-subset zero-correlation enables improved performance during application of the proposed sequence set.

641-660hit(2720hit)