The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] OMP(3945hit)

1581-1600hit(3945hit)

  • Improving Efficiency of Self-Configurable Autonomic Systems Using Clustered CBR Approach

    Malik Jahan KHAN  Mian Muhammad AWAIS  Shafay SHAMAIL  

     
    PAPER-Computer System

      Vol:
    E93-D No:11
      Page(s):
    3005-3016

    Inspired from natural self-managing behavior of the human body, autonomic systems promise to inject self-managing behavior in software systems. Such behavior enables self-configuration, self-healing, self-optimization and self-protection capabilities in software systems. Self-configuration is required in systems where efficiency is the key issue, such as real time execution environments. To solve self-configuration problems in autonomic systems, the use of various problem-solving techniques has been reported in the literature including case-based reasoning. The case-based reasoning approach exploits past experience that can be helpful in achieving autonomic capabilities. The learning process improves as more experience is added in the case-base in the form of cases. This results in a larger case-base. A larger case-base reduces the efficiency in terms of computational cost. To overcome this efficiency problem, this paper suggests to cluster the case-base, subsequent to find the solution of the reported problem. This approach reduces the search complexity by confining a new case to a relevant cluster in the case-base. Clustering the case-base is a one-time process and does not need to be repeated regularly. The proposed approach presented in this paper has been outlined in the form of a new clustered CBR framework. The proposed framework has been evaluated on a simulation of Autonomic Forest Fire Application (AFFA). This paper presents an outline of the simulated AFFA and results on three different clustering algorithms for clustering the case-base in the proposed framework. The comparison of performance of the conventional CBR approach and clustered CBR approach has been presented in terms of their Accuracy, Recall and Precision (ARP) and computational efficiency.

  • Impulsive Noise Removal in Color Image Using Interactive Evolutionary Computing

    Yohei KATSUYAMA  Kaoru ARAKAWA  

     
    PAPER

      Vol:
    E93-A No:11
      Page(s):
    2184-2192

    A new type of digital filter for removing impulsive noise in color images is proposed using interactive evolutionary computing. This filter is realized as a rule-based system containing switching median filters. This filter detects impulsive noise in color images with rules and applies switching median filters only at the noisy pixel. Interactive evolutionary computing (IEC) is adopted to optimize the filter parameters, considering the subjective assessment by human vision. In order to detect impulsive noise precisely, complicated rules with multiple parameters are required. Here, the relationship between color components and the degree of peculiarity of the pixel value are utilized in the rules. Usually, optimization of such a complicated rule-based system is difficult, but IEC enables such optimization easily. Moreover, human taste and subjective sense are highly considered in the filter performance. Computer simulations are shown for noisy images to verify its high performance.

  • Quadriphase Z-Complementary Sequences

    Xudong LI  Pingzhi FAN  Xiaohu TANG  Li HAO  

     
    PAPER-Sequences

      Vol:
    E93-A No:11
      Page(s):
    2251-2257

    Aperiodic quadriphase Z-complementary sequences, which include the conventional complementary sequences as special cases, are introduced. It is shown that, the aperiodic quadriphase Z-complementary pairs are normally better than binary ones of the same length, in terms of the number of Z-complementary pairs, and the maximum zero correlation zone. New notions of elementary transformations on quadriphase sequences and elementary operations on sets of quadriphase Z-complementary sequences are presented. In particular, new methods for analyzing the relations among the formulas relative to sets of quadriphase Z-complementary sequences and for describing the sets are proposed. The existence problem of Z-complementary pairs of quadriphase sequences with zero correlation zone equal to 2, 3, and 4 is investigated. Constructions of sets of quadriphase Z-complementary sequences and their mates are given.

  • A Relay Selection Based on Eigenvalue Decomposition for Cooperative Communications in Indoor Ubiquitous Sensor Networks

    Sekchin CHANG  

     
    LETTER

      Vol:
    E93-B No:11
      Page(s):
    2967-2970

    A new best-relay selection scheme is proposed in this letter in order to maintain a reliable cooperative communications for ubiquitous sensor networks in indoor environments. The suggested technique relies on eigenvalue decomposition to select the best relay. The simulation results confirm that the performance of the proposed approach is better than that of the previous scheme in indoor environments.

  • Universal Slepian-Wolf Source Codes Using Low-Density Parity-Check Matrices

    Tetsunao MATSUTA  Tomohiko UYEMATSU  Ryutaroh MATSUMOTO  

     
    PAPER-Source Coding

      Vol:
    E93-A No:11
      Page(s):
    1878-1888

    Low-density parity-check (LDPC) codes become very popular in channel coding, since they can achieve the performance close to maximum-likelihood (ML) decoding with linear complexity of the block length. Recently, Muramatsu et al. proposed a code using LDPC matrices for Slepian-Wolf source coding, and showed that their code can achieve any point in the achievable rate region of Slepian-Wolf source coding. However, since they employed ML decoding, their decoder needs to know the probability distribution of the source. Hence, it is an open problem whether there exists a universal code using LDPC matrices, where universal code means that the error probability of the code vanishes as the block length tends to infinity for all sources whose achievable rate region contains the rate pair of encoders. In this paper, we show the existence of a universal Slepian-Wolf source code using LDPC matrices for stationary memoryless sources.

  • Multiplier-less and Table-less Linear Approximation for Square-Related Functions

    In-Cheol PARK  Tae-Hwan KIM  

     
    PAPER-Fundamentals of Information Systems

      Vol:
    E93-D No:11
      Page(s):
    2979-2988

    Square-related functions such as square, inverse square, square-root and inverse square-root operations are widely used in digital signal processing and digital communication algorithms, and their efficient realizations are commonly required to reduce the hardware complexity. In the implementation point of view, approximate realizations are often desired if they do not degrade performance significantly. In this paper, we propose new linear approximations for the square-related functions. The traditional linear approximations need multipliers to calculate slope offsets and tables to store initial offset values and slope values, whereas the proposed approximations exploit the inherent properties of square-related functions to linearly interpolate with only simple operations, such as shift, concatenation and addition, which are usually supported in modern VLSI systems. Regardless of the bit-width of the number system, more importantly, the maximum relative errors of the proposed approximations are bounded to 6.25% and 3.13% for square and square-root functions, respectively. For inverse square and inverse square-root functions, the maximum relative errors are bounded to 12.5% and 6.25% if the input operands are represented in 20 bits, respectively.

  • Digital Image Stabilization Based on Correction for Basic Reference Frame Jitter

    Yuefei ZHANG  Mei XIE  Ling MAO  

     
    LETTER-Image Recognition, Computer Vision

      Vol:
    E93-D No:11
      Page(s):
    3149-3152

    In this letter, we first study the impact of the basic reference frame jitter on the digital image stabilization. Next, a method for stabilizing the digital image sequence based on the correction for basic reference frame jitter is proposed. The experimental results show that our proposed method can effectively decrease the excessive undefined areas in the stable image sequence resulting from the basic reference frame jitter.

  • A Game Theoretic Model for AS Topology Formation with the Scale-Free Property

    Tetsuo IMAI  Atsushi TANAKA  

     
    PAPER-Artificial Intelligence, Data Mining

      Vol:
    E93-D No:11
      Page(s):
    3051-3058

    Recent studies investigating the Internet topology reported that inter Autonomous System (AS) topology exhibits a power-law degree distribution which is known as the scale-free property. Although there are many models to generate scale-free topologies, no game theoretic approaches have been proposed yet. In this paper, we propose the new dynamic game theoretic model for the AS level Internet topology formation. Through numerical simulations, we show our process tends to give emergence of the topologies which have the scale-free property especially in the case of large decay parameters and large random link costs. The significance of our study is summarized as following three topics. Firstly, we show that scale-free topologies can also emerge from the game theoretic model. Secondly, we propose the new dynamic process of the network formation game for modeling a process of AS topology formation, and show that our model is appropriate in the micro and macro senses. In the micro sense, our topology formation process is appropriate because this represents competitive and distributed situation observed in the real AS level Internet topology formation process. In the macro sense, some of statistical properties of emergent topologies from our process are similar to those of which also observed in the real AS level Internet topology. Finally, we demonstrate the numerical simulations of our process which is deterministic variation of dynamic process of network formation game with transfers. This is also the new result in the field of the game theory.

  • Complex Sensor Event Processing for Business Process Integration

    Pablo Rosales TEJADA  Jae-Yoon JUNG  

     
    LETTER

      Vol:
    E93-B No:11
      Page(s):
    2976-2979

    Ubiquitous technologies such as sensor network and RFID have enabled companies to realize more rapid and agile manufacturing and service systems. In this paper, we addresses how the huge amount of real-time events coming from these devices can be filtered and integrated to business process such as manufacturing, logistics, and supply chain process. In particular, we focus on complex event processing of sensor and RFID events in order to integrate them to business rules in business activities. We also illustrate a ubiquitous event processing system, named ueFilter, which helps to filter and aggregate sensor event, to detect event patterns from sensors and RFID by means of event pattern languages (EPL), and trigger event-condition-action (ECA) in logistics processes.

  • Interference Coordination in Compact Frequency Reuse for Multihop Cellular Networks

    Yue ZHAO  Xuming FANG  Zhengguang ZHAO  

     
    PAPER-Mobile Information Network and Personal Communications

      Vol:
    E93-A No:11
      Page(s):
    2312-2319

    Continuously increasing the bandwidth to enhance the capacity is impractical because of the scarcity of spectrum availability. Fortunately, on the basis of the characteristics of the multihop cellular networks (MCNs), a new compact frequency reuse scheme has been proposed to provide higher spectrum utilization efficiency and larger capacity without increasing the cost on network. Base stations (BSs) and relay stations (RSs) could transmit simultaneously on the same frequency according to the compact frequency reuse scheme. In this situation, however, mobile stations (MSs) near the coverage boundary will suffer serious interference and their traffic quality can hardly be guaranteed. In order to mitigate the interference while maintaining high spectrum utilization efficiency, this paper introduces a fractional frequency reuse (FFR) scheme into multihop cellular networks, in which the principle of FFR scheme and characteristics of frequency resources configurations are described, then the transmission (Tx) power consumption of BS and RSs is analyzed. The proposed scheme can both meet the requirement of high traffic load in future cellular system and maximize the benefit by reducing the Tx power consumption. Numerical results demonstrate that the proposed FFR in compact frequency reuse achieves higher cell coverage probability and larger capacity with respect to the conventional schemes.

  • NP-Hard and k-EXPSPACE-Hard Cast Puzzles

    Chuzo IWAMOTO  Kento SASAKI  Kenji NISHIO  Kenichi MORITA  

     
    PAPER-Fundamentals of Information Systems

      Vol:
    E93-D No:11
      Page(s):
    2995-3004

    A disentanglement puzzle consists of mechanically interlinked pieces, and the puzzle is solved by disentangling one piece from another set of pieces. A cast puzzle is a type of disentanglement puzzle, where each piece is a zinc die-casting alloy. In this paper, we consider the generalized cast puzzle problem whose input is the layout of a finite number of pieces (polyhedrons) in the 3-dimensional Euclidean space. For every integer k ≥ 0, we present a polynomial-time transformation from an arbitrary k-exponential-space Turing machine M and its input x to a cast puzzle c1 of size k-exponential in |x| such that M accepts x if and only if c1 is solvable. Here, the layout of c1 is encoded as a string of length polynomial (even if c1 has size k-exponential). Therefore, the cast puzzle problem of size k-exponential is k-EXPSPACE-hard for every integer k ≥ 0. We also present a polynomial-time transformation from an arbitrary instance f of the SAT problem to a cast puzzle c2 such that f is satisfiable if and only if c2 is solvable.

  • A Method of Expanding Operating Frequency Band in a Reverberating TEM Cell by Using a Wire Septum

    Hye-Kwang KIM  Jung-Hoon KIM  Eugene RHEE  Sung-Il YANG  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E93-B No:11
      Page(s):
    3066-3071

    This paper presents a method of expanding the operating frequency band of a Reverberating TEM Cell (RTC) for electromagnetic compatibility (EMC) testing. To expand the operating frequency band of an RTC, this paper places a wire septum inside the cell instead of a solid septum. The maximum usable frequency (MUF) for TEM cell operation and the lowest usable frequency (LUF) for reverberating chamber operation with the wire septum are studied and compared with a conventional solid septum. The E field strengths inside the RTC are measured and evaluated. The measurement results show that the RTC with the wire septum have similar MUF to the RTC with a solid septum at TEM mode, but have much lower LUF at a reverberating mode, which proves that the operating frequency band of the RTC can be expanded by using the wire septum.

  • Further Results on Jury Test for Complex Polynomials

    Younseok CHOO  

     
    LETTER-Systems and Control

      Vol:
    E93-A No:10
      Page(s):
    1824-1826

    Recently a simple proof of Jury test for complex polynomials was given by the author. In this letter further extended results are presented. Another elementary proof of the Schur stability condition is provided. More importantly it is shown that the stability table can also be used to determine the root distribution of complex polynomials with respect to the unit circle in the complex plane.

  • Direct Importance Estimation with a Mixture of Probabilistic Principal Component Analyzers

    Makoto YAMADA  Masashi SUGIYAMA  Gordon WICHERN  Jaak SIMM  

     
    LETTER-Fundamentals of Information Systems

      Vol:
    E93-D No:10
      Page(s):
    2846-2849

    Estimating the ratio of two probability density functions (a.k.a. the importance) has recently gathered a great deal of attention since importance estimators can be used for solving various machine learning and data mining problems. In this paper, we propose a new importance estimation method using a mixture of probabilistic principal component analyzers. The proposed method is more flexible than existing approaches, and is expected to work well when the target importance function is correlated and rank-deficient. Through experiments, we illustrate the validity of the proposed approach.

  • Leaky Wave Antenna Using Composite Right/Left-Handed Transmission Line Composed of Ladder Network for UHF Band

    Shinji KAMADA  Naobumi MICHISHITA  Yoshihide YAMADA  

     
    PAPER-Antennas

      Vol:
    E93-B No:10
      Page(s):
    2562-2569

    Broadband antennas have various applications in digital terrestrial television (DTV) services. Compact broadband antennas are required for arranging in long and narrow space along the rim of a laptop display. A leaky-wave antenna using the composite right/left-handed transmission line (CRLH-TL) is one of the candidates for achieving the broadband antenna. However, there are not enough to design guideline of small leaky wave antennas using the CRLH-TL for UHF band. In this paper, a CRLH-TL comprising a ladder network is proposed for broadband and simple structure. The paper also discusses the design of a leaky-wave antenna with the CRLH-TL operating in the DTV band. The relation between the operating bandwidth and attenuation constant of the CRLH-TL is discussed. An antenna that can be accommodated in the limited and narrow space available in mobile terminals has to be designed. Hence, the effects of the number of cells and a finite ground plane are discussed with the purpose of achieving the miniaturization of the antenna. In this study, the transmission and radiation characteristics of the fabricated antennas are measured. The gain of the fabricated antenna is confirmed to remain almost constant even when the operating frequency is varied. The maximum gain and operating band achieved in this study are approximately -0.6 dBi and about 54%, respectively.

  • LDO Design Methodology and an Intelligent Power Management Sub-System IC for CDMA Handsets

    Tsutomu WAKIMOTO  

     
    PAPER-Electronic Circuits

      Vol:
    E93-C No:10
      Page(s):
    1518-1524

    This paper describes the design methodology of a low dropout regulator (LDO). It was used to develop a power management sub-system IC for CDMA handsets which is also described in this paper. This IC contains 11 LDOs, bandgap reference, battery charger, control logic and some other peripheral circuits. For CDMA applications, very small ground current in the order of µA in standby mode is required for LDOs. An LDO architecture to meet this requirement and achieve stable operation over the process variation was developed. The on-chip logic efficiently controls all LDOs and battery charger to reduce the power dissipation as much as possible. This mixed signal subsystem has been implemented in the in-house 0.6-µm BCDMOS process. The very low LDO ground current down to 3 µA has been achieved with stable operation.

  • Efficient Distributed Web Crawling Utilizing Internet Resources

    Xiao XU  Weizhe ZHANG  Hongli ZHANG  Binxing FANG  

     
    PAPER-Data Engineering, Web Information Systems

      Vol:
    E93-D No:10
      Page(s):
    2747-2762

    Internet computing is proposed to exploit personal computing resources across the Internet in order to build large-scale Web applications at lower cost. In this paper, a DHT-based distributed Web crawling model based on the concept of Internet computing is proposed. Also, we propose two optimizations to reduce the download time and waiting time of the Web crawling tasks in order to increase the system's throughput and update rate. Based on our contributor-friendly download scheme, the improvement on the download time is achieved by shortening the crawler-crawlee RTTs. In order to accurately estimate the RTTs, a network coordinate system is combined with the underlying DHT. The improvement on the waiting time is achieved by redirecting the incoming crawling tasks to light-loaded crawlers in order to keep the queue on each crawler equally sized. We also propose a simple Web site partition method to split a large Web site into smaller pieces in order to reduce the task granularity. All the methods proposed are evaluated through real Internet tests and simulations showing satisfactory results.

  • Improved Measurement Accuracy of a Laser Interferometer: Extended Kalman Filter Approach

    Wooram LEE  Dongkyun KIM  Kwanho YOU  

     
    LETTER-Systems and Control

      Vol:
    E93-A No:10
      Page(s):
    1820-1823

    In this paper a nonlinearity compensation algorithm based on the extended Kalman filter is proposed to improve the measurement accuracy of a heterodyne laser interferometer. The heterodyne laser interferometer is used for ultra-precision measurements such as those used in semiconductor manufacturing. However the periodical nonlinearity property caused by frequency-mixing restricts the accuracy of the nanometric measurements. In order to minimize the effect of the nonlinearity, the measurement process of the laser interferometer is modeled as a state equation and the extended Kalman filtering approach is applied to the process. The effectiveness of our proposed algorithm is demonstrated by comparing the results of the algorithm with experimental results for the laser system.

  • EPC: A Provably Secure Permutation Based Compression Function

    Nasour BAGHERI  Praveen GAURAVARAM  Majid NADERI  Babak SADEGHIYAN  

     
    LETTER-Cryptography and Information Security

      Vol:
    E93-A No:10
      Page(s):
    1833-1836

    The security of permutation-based hash functions in the ideal permutation model has been studied when the input-length of compression function is larger than the input-length of the permutation function. In this paper, we consider permutation based compression functions that have input lengths shorter than that of the permutation. Under this assumption, we propose a permutation based compression function and prove its security with respect to collision and (second) preimage attacks in the ideal permutation model. The proposed compression function can be seen as a generalization of the compression function of MD6 hash function.

  • Accurate Estimation of the Number of Weak Coherent Signals

    Masashi TSUJI  Kenta UMEBAYASHI  Yukihiro KAMIYA  Yasuo SUZUKI  

     
    PAPER-Antennas and Propagation

      Vol:
    E93-B No:10
      Page(s):
    2715-2724

    Estimating the number of signals (NIS) is an important goal in array signal processing, such as direction-of-arrival (DOA) estimation. A common approach for solving this problem is to use an eigenvalue of the array covariance matrix and information criterion, such as the Akaike information criterion (AIC) and minimum description length (MDL). However they suffer serious degradation, when the incoming signals are coherent. To estimate the NIS of the coherent signals impinging on a uniform linear array (ULA), a method for estimating the number of signals without eigendecomposition (MENSE) is proposed. The accuracy of the NIS estimation performance of MENSE is superior to the other algorithms equipped with preprocessing such as the spatial smoothing preprocessing (SSP) and forward/backward spatial smoothing techniques (FBSS) to decorrelate the coherency of signals. Instead of using SSP or FBSS preprocessing, MENSE uses the Hankel correlation matrices. The Hankel correlation matrices can not only decorrelate the coherency of signals but also suppress the influence of noise. However, in severe conditions like low signal-to-noise ratio (SNR) or a closely spaced signals impinging on a ULA, the NIS estimation metric of MENSE has some bias which causes estimation error. In this paper, we pay attention to the multiplicity defined by the ratio of the geometric mean to the arithmetic mean. Accordingly, we propose a new estimation metric that has less bias than that in MENSE. The Computer simulation results show that the proposed method is superior to MENSE in the above severe conditions.

1581-1600hit(3945hit)