The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] OMP(3945hit)

1741-1760hit(3945hit)

  • Recent Advances in Millimeter-Wave NRD-Guide Circuits Open Access

    Tsukasa YONEYAMA  

     
    INVITED PAPER

      Vol:
    E92-C No:9
      Page(s):
    1106-1110

    Though millimeter wave applications have attracted much attention in recent years, they have not yet been put to practical use. The major reason for the failure may be a large transmission loss peculiar to the short wavelength. In order to overcome the inconvenience, it may be promising to introduce the technology of millimeter-wave NRD-guide circuits. In this technology, not only NRD-guide but also Gunn diodes and Schottky diodes play the important role in high bit-rate millimeter-wave applications. A variety of practical millimeter wave wireless systems have been proposed and fabricated. Performances and applications of them are discussed in detail as well.

  • Efficient MRC-Based Residue to Binary Converters for the New Moduli Sets {22n, 2n -1, 2n+1 -1} and {22n, 2n -1, 2n-1 -1}

    Amir Sabbagh MOLAHOSSEINI  Chitra DADKHAH  Keivan NAVI  Mohammad ESHGHI  

     
    PAPER-Computer Systems

      Vol:
    E92-D No:9
      Page(s):
    1628-1638

    In this paper, the new residue number system (RNS) moduli sets {22n, 2n -1, 2n+1 -1} and {22n, 2n -1, 2n-1 -1} are introduced. These moduli sets have 4n-bit dynamic range and well-formed moduli which can result in high-performance residue to binary converters as well as efficient RNS arithmetic unit. Next, efficient residue to binary converters for the proposed moduli sets based on mixed-radix conversion (MRC) algorithm are presented. The converters are ROM-free and they are realized using carry-save adders and modulo adders. Comparison with the other residue to binary converters for 4n-bit dynamic range moduli sets shown that the presented designs based on new moduli sets {22n, 2n -1, 2n+1 -1} and {22n, 2n -1, 2n-1 -1} are improved the conversion delay and result in hardware savings. Also, the proposed moduli sets can lead to efficient binary to residue converters, and they can speed-up internal RNS arithmetic processing, compared with the other 4n-bit dynamic range moduli sets.

  • Wide-Band Dispersion Compensation for PCF with Uniform Air Hole Structure

    Kazuhide NAKAJIMA  Takashi MATSUI  Chisato FUKAI  

     
    LETTER-Optical Fiber for Communications

      Vol:
    E92-B No:9
      Page(s):
    2951-2953

    We investigate numerically the applicability of photonic crystal fiber (PCF) with a uniform air hole structure as a wide-band transmission medium. We show that accumulated dispersion over the PCF can be reduced effectively by optimizing the index profile of dispersion compensating fiber (DCF). We also show that a bandwidth of more than 300 nm will be available for 40 Gbit/s NRZ transmission by using the PCF as a transmission medium instead of conventional 1.3 µm zero-dispersion single-mode fiber (SMF).

  • The Online Graph Exploration Problem on Restricted Graphs

    Shuichi MIYAZAKI  Naoyuki MORIMOTO  Yasuo OKABE  

     
    PAPER-Algorithm Theory

      Vol:
    E92-D No:9
      Page(s):
    1620-1627

    The purpose of the online graph exploration problem is to visit all the nodes of a given graph and come back to the starting node with the minimum total traverse cost. However, unlike the classical Traveling Salesperson Problem, information of the graph is given online. When an online algorithm (called a searcher) visits a node v, then it learns information on nodes and edges adjacent to v. The searcher must decide which node to visit next depending on partial and incomplete information of the graph that it has gained in its searching process. The goodness of the algorithm is evaluated by the competitive analysis. If input graphs to be explored are restricted to trees, the depth-first search always returns an optimal tour. However, if graphs have cycles, the problem is non-trivial. In this paper we consider two simple cases. First, we treat the problem on simple cycles. Recently, Asahiro et al. proved that there is a 1.5-competitive online algorithm, while no online algorithm can be (1.25-ε)-competitive for any positive constant ε. In this paper, we give an optimal online algorithm for this problem; namely, we give a (1.366)-competitive algorithm, and prove that there is no (-ε)-competitive algorithm for any positive constant ε. Furthermore, we consider the problem on unweighted graphs. We also give an optimal result; namely we give a 2-competitive algorithm and prove that there is no (2-ε)-competitive online algorithm for any positive constant ε.

  • SIW-Like Guided Wave Structures and Applications Open Access

    Wei HONG  Ke WU  Hongjun TANG  Jixin CHEN  Peng CHEN  Yujian CHENG  Junfeng XU  

     
    INVITED PAPER

      Vol:
    E92-C No:9
      Page(s):
    1111-1123

    In this paper, the research advances in SIW-like (Substrate Integrated Waveguide-like) guided wave structures and their applications in the State Key Laboratory of Millimeter Waves of China is reviewed. Our work is concerned with the investigations on the propagation characteristics of SIW, half-mode SIW (HMSIW) and the folded HMSIW (FHMSIW) as well as their applications in microwave and millimeter wave filters, diplexers, directional couplers, power dividers, antennas, power combiners, phase shifters and mixers etc. Selected results are presented to show the interesting features and advantages of those new techniques.

  • Approximate Algorithm for Hybrid Model Predictive Control with Time-Varying Reference

    Koichi KOBAYASHI  Kunihiko HIRAISHI  Nguyen Van TANG  

     
    PAPER-Systems and Control

      Vol:
    E92-A No:8
      Page(s):
    2046-2052

    In this paper, we propose a new approximate algorithm for the model predictive control (MPC) problem with a time-varying reference of hybrid systems. The proposed algorithm consists of an offline computation and an online computation. In the offline computation, candidates of mode sequences are derived. In the online computation, after the mode sequence is uniquely decided among candidates, the finite-time optimal control problem, i.e., the quadratic programming problem, is solved. So by applying the proposed algorithm, the computational amount of the online computation is decreased. First, the MPC problem with a time-varying reference is formulated. Next, the proposed algorithm is explained, and the accuracy of the obtained approximate solution is discussed. Finally, the effectiveness of the proposed method is shown by a numerical example.

  • d-Primitive Words and D(1)-Concatenated Words

    Itaru KATAOKA  Tetsuo MORIYA  

     
    LETTER-Automata and Formal Language Theory

      Vol:
    E92-D No:8
      Page(s):
    1577-1579

    In this paper, we study d-primitive words and D(1)-concatenated words. First we show that neither D(1), the set of all d-primitive words, nor D(1)D(1), the set of all D(1)-concatenated words, is regular. Next we show that for u, v, w ∈Σ+ with |u|=|w|, uvw ∈ D(1) if and only if uv+w ⊆ D(1). It is also shown that every d-primitive word, with the length of two or more, is D(1)-concatenated.

  • Error-Trellis Construction for Convolutional Codes Using Shifted Error/Syndrome-Subsequences

    Masato TAJIMA  Koji OKINO  Takashi MIYAGOSHI  

     
    PAPER-Coding Theory

      Vol:
    E92-A No:8
      Page(s):
    2086-2096

    In this paper, we extend the conventional error-trellis construction for convolutional codes to the case where a given check matrix H(D) has a factor Dl in some column (row). In the first case, there is a possibility that the size of the state space can be reduced using shifted error-subsequences, whereas in the second case, the size of the state space can be reduced using shifted syndrome-subsequences. The construction presented in this paper is based on the adjoint-obvious realization of the corresponding syndrome former HT(D). In the case where all the columns and rows of H(D) are delay free, the proposed construction is reduced to the conventional one of Schalkwijk et al. We also show that the proposed construction can equally realize the state-space reduction shown by Ariel et al. Moreover, we clarify the difference between their construction and that of ours using examples.

  • A Switching Type-II Hybrid ARQ Scheme with RCPT Codes

    Ju-Ya CHEN  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E92-B No:8
      Page(s):
    2723-2726

    A switching type-II hybrid ARQ scheme with rate compatible punctured turbo (RCPT) codes is proposed in this letter. The proposed scheme combines three retransmission schemes by minimizing a cost function that yields a compromise between throughput and delay time. The performance of the proposed algorithm is evaluated by computer simulations. Compared with conventional hybrid ARQ algorithms, the proposed algorithm can offer almost the same throughput performance with smaller time delay.

  • Coding Complexity Prediction for H.264/AVC Rate Control

    Yimin ZHOU  Ling TIAN  

     
    LETTER-Image Processing and Video Processing

      Vol:
    E92-D No:8
      Page(s):
    1592-1595

    Coding complexity is a crucial parameter in rate control scheme. Traditional measures for coding complexity are based on statistic and estimation. This way may cause the imprecise coding complexity and finally bring inaccurate output bit rate more or less. To resolve this problem, we propose a hypothetical virtual coding complexity to imitate the real coding complexity. Based on the proposed coding complexity measure, a novel rate control algorithm is proposed either. Experimental results and analysis show that the proposed mearsure for coding complexity is effective, and our scheme outperforms the JVT-W042 solution by providing more accurate QP prediction, reducing frame skipping, and improving visual quality.

  • Memory-Efficient and High-Performance Two-Dimensional Discrete Wavelet Transform Architecture Based on Decomposed Lifting Algorithm

    Peng CAO  Chao WANG  Longxing SHI  

     
    PAPER-Digital Signal Processing

      Vol:
    E92-A No:8
      Page(s):
    2000-2008

    The line-based method has been one of the most commonly-used methods of hardware implementation of two-dimensional (2D) discrete wavelet transform (DWT). However, data buffer is required between the row DWT processor and the column DWT processor to solve the data flow mismatch, which increases the on-chip memory size and the output latency. Since the incompatible data flow is induced from the intrinsic property of adopted lifting-based algorithm, a decomposed lifting algorithm (DLA) is presented by rearranging the data path of lifting steps to ensure that image data is processed in raster scan manner in row processor and column processor. Theoretical analysis indicates that the precision issue of DLA outperforms other lifting-based algorithms in terms of round-off noise and internal word-length. A memory-efficient and high-performance line-based architecture is proposed based on DLA without the implementation of data buffer. For an N M image, only 2N internal memory is required for 5/3 filter and 4N of that is required for 9/7 filter to perform 2D DWT, where N and M indicate the width and height of an image. Compared with related 2D DWT architectures, the size of on-chip memory is reduced significantly under the same arithmetic cost, memory bandwidth and timing constraint. This design was implemented in SMIC 0.18 µm CMOS logic fabrication with 32 kbits dual-port RAM and 20 K equivalent 2-input NAND gates in a 1.00 mm 1.00 mm die, which can process 512 512 image under 100 MHz.

  • A Novel Grid Occupancy Criterion for Independent Component Analysis

    Yang CHEN  

     
    PAPER-Theory

      Vol:
    E92-A No:8
      Page(s):
    1874-1882

    Transform each coordinate of the realizations of several random variables (RVs) by the distribution function of the corresponding RV and partition the range space into a uniform grid. The expected number of occupied grid-boxes will be greatest when these RVs are independent. Based on this fact, we propose a novel measure of independence named grid occupancy (GO). We also address the problem of how to make optimum selection of the parameters in GO, i.e., the number of observations and the number of quantization levels. In addition, we apply GO to independent component analysis (ICA). The GO based ICA algorithm can separate signals with arbitrary continuous distributions and favors digital hardware implementation.

  • A 0.18 µm Stability-Enhanced CMOS LDO with Robust Compensation Scheme

    Hsuan-I PAN  Chern-Lin CHEN  

     
    PAPER-Electronic Circuits

      Vol:
    E92-C No:8
      Page(s):
    1080-1086

    A 0.18 µm 1.5 V/50 mA stability-enhanced low dropout regulator (LDO) is presented. A multi-path error amplifier and a split pass device structure are utilized for pole-zero pair compensation. The proposed LDO can be stable without a load capacitor and also stable with different combinations of load capacitors and equivalent series resistance.

  • Search Control Algorithm Based on Random Step Size Hill-Climbing Method for Adaptive PMD Compensation

    Ken TANIZAWA  Akira HIROSE  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E92-B No:8
      Page(s):
    2584-2590

    Adaptive polarization mode dispersion (PMD) compensation is required for the speed-up and advancement of the present optical communications. The combination of a tunable PMD compensator and its adaptive control method achieves adaptive PMD compensation. In this paper, we report an effective search control algorithm for the feedback control of the PMD compensator. The algorithm is based on the hill-climbing method. However, the step size changes randomly to prevent the convergence from being trapped at a local maximum or a flat, unlike the conventional hill-climbing method. The randomness depends on the Gaussian probability density functions. We conducted transmission simulations at 160 Gb/s and the results show that the proposed method provides more optimal compensator control than the conventional hill-climbing method.

  • Extension of the Algorithm to Compute H Norm of a Parametric System

    Takuya KITAMOTO  

     
    PAPER-Systems and Control

      Vol:
    E92-A No:8
      Page(s):
    2036-2045

    Let G(s)=C(sI - A)-1B+D be a given system where entries of A,B,C,D are polynomials in a parameter k. Then H∞ norm || G(s) ||∞ of G(s) is a function of k, and [9] presents an algorithm to express 1/(||G(s) ||∞)2 as a root of a bivariate polynomial, assuming feedthrough term D to be zero. This paper extends the algorithm in two ways: The first extension is the form of the function to be expressed. The extended algorithm can treat, not only H∞ norm, but also functions that appear in the celebrated KYP Lemma. The other extension is the range of the frequency. While H∞ norm considers the supremum of the maximum singular value of G(i ω) for the infinite range 0 ≤ω ≤ ∞ of ω, the extended algorithm treats the norm for the finite frequency range ω ≤ ω ≤ ω- (ω, ω- ∈ R ∪ ∞). Those two extensions allow the algorithm to be applied to wider area of control problems. We give illustrative numerical examples where we apply the extended algorithm to the computation of the frequency-restricted norm, i.e., the supremum of the maximum singular value of G(i ω) (ω- ≤ ω ≤ ω-).

  • On the Time Complexity of Dijkstra's Three-State Mutual Exclusion Algorithm

    Masahiro KIMOTO  Tatsuhiro TSUCHIYA  Tohru KIKUNO  

     
    LETTER-Computation and Computational Models

      Vol:
    E92-D No:8
      Page(s):
    1570-1573

    In this letter we give a lower bound on the worst-case time complexity of Dijkstra's three-state mutual exclusion algorithm by specifying a concrete behavior of the algorithm. We also show that our result is more accurate than the known best bound.

  • Illumination-Robust Face Recognition from a Single Image per Person Using Matrix Polar Decomposition

    Mehdi EZOJI  Karim FAEZ  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E92-D No:8
      Page(s):
    1561-1569

    In this paper, a novel illumination invariant face recognition algorithm is proposed for face recognition. This algorithm is composed of two phases. In the first phase, we reduce the effect of illumination changes using a nonlinear mapping of image intensities. Then, we modify the distribution of the coefficients of wavelet transform in certain sub-bands. In this step, the recognition performance is more important than image quality. In the second phase, we used the unitary factor of polar decomposition of enhanced image as a feature vector. In the recognition phase, the correlation-based nearest neighbor rule is applied for the matching. We have performed some experiments on several databases and have evaluated the proposed method in different aspects. Experimental results in recognition show that this approach provides a suitable representation for overcoming illumination effects.

  • Forecasting the View of Mt. Fuji Using Earth Observation Data

    Mitsuru KAKIMOTO  Hisaaki HATANO  Yosoko NISHIZAWA  

     
    PAPER-Pattern Recognition

      Vol:
    E92-D No:8
      Page(s):
    1551-1560

    In this paper, we present a forecasting method for the view of Mt. Fuji as an application of Earth observation data (EOD) obtained by satellites. We defined the Mt. Fuji viewing index (FVI) that characterises how well the mountain looks on a given day, based on photo data produced by a fixed-point observation. A long-term predictor of FVI, ranging from 0 to 30 days, was constructed through support vector machine regression on climate and earth observation data. It was found that the aerosol mass concentration (AMC) improves prediction performance, and such performance is particularly significant in the long-term range.

  • A Resilient and Efficient Replication Attack Detection Scheme for Wireless Sensor Networks

    Chano KIM  Seungjae SHIN  Chanil PARK  Hyunsoo YOON  

     
    LETTER-Application Information Security

      Vol:
    E92-D No:7
      Page(s):
    1479-1483

    In a large-scale sensor network, replicated hostile nodes may be used for harsh inner attacks. To detect replicas, this paper presents a distributed, deterministic, and efficient approach robust to node compromise attacks without incurring significant resource overheads.

  • Grouped Scan Slice Repetition Method for Reducing Test Data Volume and Test Application Time

    Yongjoon KIM  Myung-Hoon YANG  Jaeseok PARK  Eunsei PARK  Sungho KANG  

     
    LETTER-VLSI Systems

      Vol:
    E92-D No:7
      Page(s):
    1462-1465

    This paper presents a grouped scan slice encoding technique using scan slice repetition to simultaneously reduce test data volume and test application time. Using this method, many scan slices that would be incompatible with the conventional selective scan slice method can be encoded as compatible scan slices. Experiments were performed with ISCAS'89 and ITC'99 benchmark circuits, and results show the effectiveness of the proposed method.

1741-1760hit(3945hit)