The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] OMP(3945hit)

1521-1540hit(3945hit)

  • Geometry Coding for Triangular Mesh Model with Structuring Surrounding Vertices and Connectivity-Oriented Multiresolution Decomposition

    Shuji WATANABE  Akira KAWANAKA  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E94-D No:4
      Page(s):
    886-894

    In this paper, we propose a novel coding scheme for the geometry of the triangular mesh model. The geometry coding schemes can be classified into two groups: schemes with perfect reconstruction property that maintains their connectivity, and schemes without it in which the remeshing procedure is performed to change the mesh to semi-regular or regular mesh. The former schemes have good coding performance at higher coding rate, while the latter give excellent coding performance at lower coding rate. We propose a geometry coding scheme that maintains the connectivity and has a perfect reconstruction property. We apply a method that successively structures on 2-D plane the surrounding vertices obtained by expanding vertex sequences neighboring the previous layer. Non-separable component decomposition is applied, in which 2-D structured data are decomposed into four components depending on whether their location was even or odd on the horizontal and vertical axes in the 2-D plane. And a prediction and update are performed for the decomposed components. In the prediction process the predicted value is obtained from the vertices, which were not processed, neighboring the target vertex in the 3-D space. And the zero-tree coding is introduced in order to remove the redundancies between the coefficients at similar positions in different resolution levels. SFQ (Space-Frequency Quantization) is applied, which gives the optimal combination of coefficient pruning for the descendant coefficients of each tree element and a uniform quantization for each coefficient. Experiments applying the proposed method to several polygon meshes of different resolutions show that the proposed method gives a better coding performance at lower bit rate when compared to the conventional schemes.

  • A Simplified Jury's Table for Complex Polynomials

    Younseok CHOO  Young-Ju KIM  

     
    LETTER-Systems and Control

      Vol:
    E94-A No:4
      Page(s):
    1148-1150

    In this letter a simplified Jury's table for real polynomials is extended to complex polynomials. Then it is shown that the extended table contains information on the root distribution of complex polynomials with respect to the unit circle in the complex plane. The result given in this letter is distinct from the recent one in that root counting is performed in a different way.

  • An H.264/AVC Decoder with Reduced External Memory Access for Motion Compensation

    Jaesun KIM  Younghoon KIM  Hyuk-Jae LEE  

     
    PAPER-Computer System

      Vol:
    E94-D No:4
      Page(s):
    798-808

    The excessive memory access required to perform motion compensation when decoding compressed video is one of the main limitations in improving the performance of an H.264/AVC decoder. This paper proposes an H.264/AVC decoder that employs three techniques to reduce external memory access events: efficient distribution of reference frame data, on-chip cache memory, and frame memory recompression. The distribution of reference frame data is optimized to reduce the number of row activations during SDRAM access. The novel cache organization is proposed to simplify tag comparisons and ease the access to consecutive 4×4 blocks. A recompression algorithm is modified to improve compression efficiency by using unused storage space in neighboring blocks as well as the correlation with the neighboring pixels stored in the cache. Experimental results show that the three techniques together reduce external memory access time by an average of 90%, which is 16% better than the improvements achieved by previous work. Efficiency of the frame memory recompression algorithm is improved with a 32×32 cache, resulting in a PSNR improvement of 0.371 dB. The H.264/AVC decoder with the three techniques is fabricated and implemented as an ASIC using 0.18 µm technology.

  • Applying Output Feedback Integral Sliding Mode Controller to Time-Delay Systems

    Huan-Chan TING  Jeang-Lin CHANG  Yon-Ping CHEN  

     
    PAPER-Systems and Control

      Vol:
    E94-A No:4
      Page(s):
    1051-1058

    For time-delay systems with mismatched disturbances and uncertainties, this paper developed an integral sliding mode control algorithm using output information only to stabilize the system. An integral sliding surface is comprised of output vectors and an auxiliary full-order compensator. The proposed output feedback sliding mode controller can satisfy the reaching and sliding condition and maintain the system on the sliding surface from the initial moment. When the specific linear matrix inequality has a solution, our method can guarantee the stability of the closed-loop system and satisfy the property of disturbance attenuation. Moreover, the design parameters of the controller and compensator can be simultaneously determined by the solution to the linear matrix inequality. Finally, a numerical example illustrated the applicability of the proposed scheme.

  • A 500 MS/s 600 µW 300 µm2 Single-Stage Gain-Improved and Kickback Noise Rejected Comparator in 0.35 µm 3.3 v CMOS Process

    Sarang KAZEMINIA  Morteza MOUSAZADEH  Kayrollah HADIDI  Abdollah KHOEI  

     
    BRIEF PAPER

      Vol:
    E94-C No:4
      Page(s):
    635-640

    This paper presents a high speed single-stage latched comparator which is scheduled in time for both amplification and latch operations. Small active area and simple switching strategy besides desired power consumption at high comparison rates qualifies the proposed comparator to be repeatedly employed in high speed flash A/D converters. A strategy of kickback noise elimination besides gain enhancement is also introduced. A low power holding read-out circuit is presented. Post-Layout simulation results confirm 500 MS/s comparison rate with 5 mv resolution for a 1.6 v peak-to-peak input signal range and 600 µw power consumption from a 3.3 v power supply by using TSMC model of 0.35 µm CMOS technology. Total active area of proposed comparator and read-out circuit is about 300 µm2.

  • Compressive Frequency Sensing Techique Using Discrete Prolate Spheroidal Sequences

    Jinsung OH  Younam KIM  

     
    LETTER-Digital Signal Processing

      Vol:
    E94-A No:4
      Page(s):
    1140-1143

    In this paper, we present a new frequency identification technique using the recent methodology of compressive sensing and discrete prolate spheroidal sequences with optimal energy concentration. Using the bandpass form of discrete prolate spheroidal sequences as basis matrix in compressive sensing, compressive frequency sensing algorithm is presented. Simulation results are given to present the effectiveness of the proposed technique for application to detection of carrier-frequency type signal and recognition of wideband signal in communication.

  • Cache Based Motion Compensation Architecture for Quad-HD H.264/AVC Video Decoder

    Jinjia ZHOU  Dajiang ZHOU  Gang HE  Satoshi GOTO  

     
    PAPER

      Vol:
    E94-C No:4
      Page(s):
    439-447

    In this paper, we present a cache based motion compensation (MC) architecture for Quad-HD H.264/AVC video decoder. With the significantly increased throughput requirement, VLSI design for MC is greatly challenged by the huge area cost and power consumption. Moreover, the long memory system latency leads to performance drop of the MC pipeline. To solve these problems, three optimization schemes are proposed in this work. Firstly, a high-performance interpolator based on Horizontal-Vertical Expansion and Luma-Chroma Parallelism (HVE-LCP) is proposed to efficiently increase the processing throughput to at least over 4 times as the previous designs. Secondly, an efficient cache memory organization scheme (4S×4) is adopted to improve the on-chip memory utilization, which contributes to memory area saving of 25% and memory power saving of 3949%. Finally, by employing a Split Task Queue (STQ) architecture, the cache system is capable of tolerating much longer latency of the memory system. Consequently, the cache idle time is saved by 90%, which contributes to reducing the overall processing time by 2440%. When implemented with SMIC 90 nm process, this design costs a logic gate count and on-chip memory of 108.8 k and 3.1 kB respectively. The proposed MC architecture can support real-time processing of 3840×2160@60 fps with less than 166 MHz.

  • An Improved Linear Difference Method with High ROM Compression Ratio in Direct Digital Frequency Synthesizer

    Van-Phuc HOANG  Cong-Kha PHAM  

     
    LETTER-Digital Signal Processing

      Vol:
    E94-A No:3
      Page(s):
    995-998

    The increasing demand of low power Direct Digital Frequency Synthesizer (DDFS) leads to the requirement of efficient compression methods to reduce ROM size for storing sine function values. This paper presents a technique to achieve very high compression ratio by using the optimized four-segment linear difference method. The proposed technique results in the ROM compression ratio of about 117.3:1 and the word size reduction of 6 bits for the design of a DDFS with 11-bit sine amplitude output. This high compression ratio result is very promising to meet the requirement of low power consumption and low hardware complexity in digital VLSI technology.

  • An Efficient Statistical Pruning Algorithm for Fixed-Complexity Sphere Decoder

    Sheng LEI  Xin ZHANG  Cong XIONG  Dacheng YANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:3
      Page(s):
    834-837

    We create an efficient statistical pruning (SP) algorithm for fixed-complexity sphere decoder (FSD) by utilizing partial decision feedback detection (i.e., SP-FSD). Simulation results show that SP-FSD not only attains the near-optimal performance, but also achieves much lower complexity than the original FSD and its two lately-developed variants: the simplified FSD (SFSD) and the statistical threshold-based FSD (ST-FSD).

  • Page History Explorer: Visualizing and Comparing Page Histories

    Adam JATOWT  Yukiko KAWAI  Katsumi TANAKA  

     
    PAPER

      Vol:
    E94-D No:3
      Page(s):
    564-577

    Due to the increased preservation efforts, large amounts of past Web data have been stored in Web archives and other archival repositories. Utilizing this data can offer certain benefits to users, for example, it can facilitate page understanding. In this paper, we propose a system for interactive exploration of page histories. We demonstrate an application called Page History Explorer (PHE) for summarizing and visualizing histories of Web pages. PHE portrays the overview of page evolution, characterizes its typical content over time and lets users observe page histories from different viewpoints. In addition, it enables flexible comparison of histories of different pages.

  • Personal Network Construction System Using Mobile Phones

    Takeshi UMEZAWA  Kiyohide NAKAUCHI  Masugi INOUE  Takashi MATSUNAKA  Takayuki WARABINO  Yoji KISHI  

     
    PAPER

      Vol:
    E94-B No:3
      Page(s):
    630-638

    Despite the recent advances in personal communication devices and access network technology, users still face problems such as high device maintenance costs, complication of inter-device cooperation, illegal access to devices, and leakage of personal information. Consequently, it is difficult for users to construct a secure network with local as well as remote personal devices. We propose a User-driven Service Creation Platform (USCP), which enables users to construct a secure private network using a simple and intuitive approach that leverages the authentication mechanism in mobile phone networks. USCP separates signaling and data paths in a flat, virtual network topology. In this paper, we describe the basic design of USCP, the current implementation, and system evaluations.

  • Blind Source Separation Using Dodecahedral Microphone Array under Reverberant Conditions

    Motoki OGASAWARA  Takanori NISHINO  Kazuya TAKEDA  

     
    PAPER-Engineering Acoustics

      Vol:
    E94-A No:3
      Page(s):
    897-906

    The separation and localization of sound source signals are important techniques for many applications, such as highly realistic communication and speech recognition systems. These systems are expected to work without such prior information as the number of sound sources and the environmental conditions. In this paper, we developed a dodecahedral microphone array and proposed a novel separation method with our developed device. This method refers to human sound localization cues and uses acoustical characteristics obtained by the shape of the dodecahedral microphone array. Moreover, this method includes an estimation method of the number of sound sources that can operate without prior information. The sound source separation performances were evaluated under simulated and actual reverberant conditions, and the results were compared with the conventional method. The experimental results showed that our separation performance outperformed the conventional method.

  • Prediction of Circuit-Performance Variations from Technology Variations for Reliable 100 nm SOC Circuit Design

    Norio SADACHIKA  Shu MIMURA  Akihiro YUMISAKI  Kou JOHGUCHI  Akihiro KAYA  Mitiko MIURA-MATTAUSCH  Hans Jurgen MATTAUSCH  

     
    PAPER-Semiconductor Materials and Devices

      Vol:
    E94-C No:3
      Page(s):
    361-367

    The long-standing problem of predicting circuit performance variations without a huge number of statistical investigations is demonstrated to be solvable by a surface-potential-based MOSFET model. Direct connection of model parameters to physical device parameters reflecting process variations and the reduced number of model parameters are the enabling key model properties. It has been proven that the surface-potential-based model HiSIM2 is capable of reproducing measured I-V and its derivatives' variations with those of device/process related model parameters. When used to predict 51-stage ring oscillator frequency variation including both inter- and intra-chip variation, it reproduces measurements with shortened simulation time.

  • A Framework of Real Time Hand Gesture Vision Based Human-Computer Interaction

    Liang SHA  Guijin WANG  Xinggang LIN  Kongqiao WANG  

     
    PAPER-Vision

      Vol:
    E94-A No:3
      Page(s):
    979-989

    This paper presents a robust framework of human-computer interaction from the hand gesture vision in the presence of realistic and challenging scenarios. To this end, several novel components are proposed. A hybrid approach is first proposed to automatically infer the beginning position of hand gestures of interest via jointly optimizing the regions given by an offline skin model trained from Gaussian mixture models and a specific hand gesture classifier trained from the Adaboost technique. To consistently track the hand in the context of using kernel based tracking, a semi-supervised feature selection strategy is further presented to choose the feature subspaces which appropriately represent the properties of offline hand skin cues and online foreground-background-classification cues. Taking the histogram of oriented gradients as the descriptor to represent hand gestures, a soft-decision approach is finally proposed for recognizing static hand gestures at the locations where severe ambiguity occurs and hidden Markov model based dynamic gestures are employed for interaction. Experiments on various real video sequences show the superior performance of the proposed components. In addition, the whole framework is applicable to real-time applications on general computing platforms.

  • Probabilistic Treatment for Syntactic Gaps in Analytic Language Parsing

    Prachya BOONKWAN  Thepchai SUPNITHI  

     
    PAPER

      Vol:
    E94-D No:3
      Page(s):
    440-447

    This paper presents a syntax-based framework for gap resolution in analytic languages. CCG, reputable for dealing with deletion under coordination, is extended with a memory mechanism similar to the slot-and-filler mechanism, resulting in a wider coverage of syntactic gaps patterns. Though our grammar formalism is more expressive than the canonical CCG, its generative power is bounded by Partially Linear Indexed Grammar. Despite the spurious ambiguity originated from the memory mechanism, we also show that its probabilistic parsing is feasible by using the dual decomposition algorithm.

  • Error Analysis at Numerical Inversion of Multidimensional Laplace Transforms Based on Complex Fourier Series Approximation

    Lubomír BRANÍK  

     
    LETTER-Digital Signal Processing

      Vol:
    E94-A No:3
      Page(s):
    999-1001

    In the paper, a technique of the numerical inversion of multidimensional Laplace transforms (nD NILT), based on a complex Fourier series approximation is elaborated in light of a possible ralative error achievable. The detailed error analysis shows a relationship between the numerical integration of a multifold Bromwich integral and a complex Fourier series approximation, and leads to a novel formula relating the limiting relative error to the nD NILT technique parameters.

  • Universally Composable and Statistically Secure Verifiable Secret Sharing Scheme Based on Pre-Distributed Data

    Rafael DOWSLEY  Jorn MULLER-QUADE  Akira OTSUKA  Goichiro HANAOKA  Hideki IMAI  Anderson C.A. NASCIMENTO  

     
    PAPER-Cryptography and Information Security

      Vol:
    E94-A No:2
      Page(s):
    725-734

    This paper presents a non-interactive verifiable secret sharing scheme (VSS) tolerating a dishonest majority based on data pre-distributed by a trusted authority. As an application of this VSS scheme we present very efficient unconditionally secure protocols for performing multiplication of shares based on pre-distributed data which generalize two-party computations based on linear pre-distributed bit commitments. The main results of this paper are a non-interactive VSS, a simplified multiplication protocol for shared values based on pre-distributed random products, and non-interactive zero knowledge proofs for arbitrary polynomial relations. The security of the schemes is proved using the UC framework.

  • Interactive Support System for Image Quality Enhancement Focused on Lightness, Color and Sharpness

    Kazune AOIKE  Gosuke OHASHI  Yuichiro TOKUDA  Yoshifumi SHIMODAIRA  

     
    PAPER-Evaluation

      Vol:
    E94-A No:2
      Page(s):
    500-508

    An interactive support system for image quality enhancement to adjust display equipments according to the user's own subjectivity is developed. Interactive support system for image quality enhancement enable the parameters based on user's preference to be derived by only selecting user's preference images without adjusting image quality parameters directly. In the interactive support system for image quality enhancement, the more the number of parameters is, the more effective this system is. In this paper, lightness, color and sharpness are used as the image quality parameters and the images are enhanced by increasing the number of parameters. Shape of tone curve is controlled by two image quality adjustment parameters for lightness enhancement. Images are enhanced using two image quality adjustment parameters for color enhancement. The two parameters are controlled in L* a* b* color space. Degree and coarseness of image sharpness enhancement are adjusted by controlling a radius of mask of smoothing filter and weight of adding. To confirm the effectiveness of the proposed method, the image quality and derivation time of the proposed method are compared with a manual adjustment method.

  • An Approximative Calculation of the Fractal Structure in Self-Similar Tilings

    Yukio HAYASHI  

     
    LETTER-Nonlinear Problems

      Vol:
    E94-A No:2
      Page(s):
    846-849

    Fractal structures emerge from statistical and hierarchical processes in urban development or network evolution. In a class of efficient and robust geographical networks, we derive the size distribution of layered areas, and estimate the fractal dimension by using the distribution without huge computations. This method can be applied to self-similar tilings based on a stochastic process.

  • Adaptive Algorithms for Planar Convex Hull Problems

    Hee-Kap AHN  Yoshio OKAMOTO  

     
    PAPER

      Vol:
    E94-D No:2
      Page(s):
    182-189

    We study problems in computational geometry from the viewpoint of adaptive algorithms. Adaptive algorithms have been extensively studied for the sorting problem, and in this paper we generalize the framework to geometric problems. To this end, we think of geometric problems as permutation (or rearrangement) problems of arrays, and define the "presortedness" as a distance from the input array to the desired output array. We call an algorithm adaptive if it runs faster when a given input array is closer to the desired output, and furthermore it does not make use of any information of the presortedness. As a case study, we look into the planar convex hull problem for which we discover two natural formulations as permutation problems. An interesting phenomenon that we prove is that for one formulation the problem can be solved adaptively, but for the other formulation no adaptive algorithm can be better than an optimal output-sensitive algorithm for the planar convex hull problem. To further pursue the possibility of adaptive computational geometry, we also consider constructing a kd-tree.

1521-1540hit(3945hit)