The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] PA(8249hit)

801-820hit(8249hit)

  • FSCRank: A Failure-Sensitive Structure-Based Component Ranking Approach for Cloud Applications

    Na WU  Decheng ZUO  Zhan ZHANG  Peng ZHOU  Yan ZHAO  

     
    PAPER-Dependable Computing

      Pubricized:
    2018/11/13
      Vol:
    E102-D No:2
      Page(s):
    307-318

    Cloud computing has attracted a growing number of enterprises to move their business to the cloud because of the associated operational and cost benefits. Improving availability is one of the major concerns of cloud application owners because modern applications generally comprise a large number of components and failures are common at scale. Fault tolerance enables an application to continue operating properly when failure occurs, but fault tolerance strategy is typically employed for the most important components because of financial concerns. Therefore, identifying important components has become a critical research issue. To address this problem, we propose a failure-sensitive structure-based component ranking approach (FSCRank), which integrates component failure impact and application structure information into component importance evaluation. An iterative ranking algorithm is developed according to the structural characteristics of cloud applications. The experimental results show that FSCRank outperforms the other two structure-based ranking algorithms for cloud applications. In addition, factors that affect application availability optimization are analyzed and summarized. The experimental results suggest that the availability of cloud applications can be greatly improved by implementing fault tolerance strategy for the important components identified by FSCRank.

  • How to Select TDOA-Based Bearing Measurements for Improved Passive Triangulation Localization

    Kyu-Ha SONG  San-Hae KIM  Woo-Jin SONG  

     
    LETTER-Measurement Technology

      Vol:
    E102-A No:2
      Page(s):
    490-496

    When time difference of arrival (TDOA)-based bearing measurements are used in passive triangulation, the accuracy of localization depends on the geometric relationship between the emitter and the sensors. In particular, the localization accuracy varies with the geometric conditions in TDOA-based direction finding (DF) for bearing measurement and lines of bearing (LOBs) crossing for triangulation. To obtain an accurate estimate in passive triangulation using TDOA-based bearing measurements, we shall use these bearings selectively by considering geometric dilution of precision (GDOP) between the emitter and the sensors. To achieve this goal, we first define two GDOPs related to TDOA-based DF and LOBs crossing geometries, and then propose a new hybrid GDOP by combining these GDOPs for a better selection of bearings. Subsequently, two bearings with the lowest hybrid GDOP condition are chosen as the inputs to a triangulation localization algorithm. In simulations, the proposed method shows its enhancement to the localization accuracy.

  • Parallel Feature Network For Saliency Detection

    Zheng FANG  Tieyong CAO  Jibin YANG  Meng SUN  

     
    LETTER-Image

      Vol:
    E102-A No:2
      Page(s):
    480-485

    Saliency detection is widely used in many vision tasks like image retrieval, compression and person re-identification. The deep-learning methods have got great results but most of them focused more on the performance ignored the efficiency of models, which were hard to transplant into other applications. So how to design a efficient model has became the main problem. In this letter, we propose parallel feature network, a saliency model which is built on convolution neural network (CNN) by a parallel method. Parallel dilation blocks are first used to extract features from different layers of CNN, then a parallel upsampling structure is adopted to upsample feature maps. Finally saliency maps are obtained by fusing summations and concatenations of feature maps. Our final model built on VGG-16 is much smaller and faster than existing saliency models and also achieves state-of-the-art performance.

  • Information Propagation Analysis of Social Network Using the Universality of Random Matrix

    Yusuke SAKUMOTO  Tsukasa KAMEYAMA  Chisa TAKANO  Masaki AIDA  

     
    PAPER-Multimedia Systems for Communications

      Pubricized:
    2018/08/17
      Vol:
    E102-B No:2
      Page(s):
    391-399

    Spectral graph theory gives an algebraic approach to the analysis of the dynamics of a network by using the matrix that represents the network structure. However, it is not easy for social networks to apply the spectral graph theory because the matrix elements cannot be given exactly to represent the structure of a social network. The matrix element should be set on the basis of the relationship between persons, but the relationship cannot be quantified accurately from obtainable data (e.g., call history and chat history). To get around this problem, we utilize the universality of random matrices with the feature of social networks. As such a random matrix, we use the normalized Laplacian matrix for a network where link weights are randomly given. In this paper, we first clarify that the universality (i.e., the Wigner semicircle law) of the normalized Laplacian matrix appears in the eigenvalue frequency distribution regardless of the link weight distribution. Then, we analyze the information propagation speed by using the spectral graph theory and the universality of the normalized Laplacian matrix. As a result, we show that the worst-case speed of the information propagation changes up to twice if the structure (i.e., relationship among people) of a social network changes.

  • Automatic Generation of Train Timetables from Mesoscopic Railway Models by SMT-Solver Open Access

    Yoshinao ISOBE  Hisabumi HATSUGAI  Akira TANAKA  Yutaka OIWA  Takanori AMBE  Akimasa OKADA  Satoru KITAMURA  Yamato FUKUTA  Takashi KUNIFUJI  

     
    PAPER

      Vol:
    E102-A No:2
      Page(s):
    325-335

    This paper presents a formal approach for generating train timetables in a mesoscopic level that is more concrete than the macroscopic level, where each station is simply expressed in a black-box, and more abstract than the microscopic level, where the infrastructure in each station-area is expressed in detail. The accuracy of generated timetable and the computational effort for the generation is a trade-off. In this paper, we design a formal mesoscopic modeling language by analyzing real railways, for example Tazawako-line as the first step of this work. Then, we define the constraint formulae for generating train timetables with the help of SMT (Satisfiability Module Theories)-Solver, and explain our tool RW-Solver that is an implementation of the constraint formulae. Finally, we demonstrate how RW-Solver with the help of SMT-Solver can be used for generating timetables in a case study of Tazawako-line.

  • Moving Target Detection and Two-Receiver Setup Using Optical-Fiber-Connected Passive Primary Surveillance Radar

    Masato WATANABE  Junichi HONDA  Takuya OTSUYAMA  

     
    PAPER-Sensing

      Pubricized:
    2018/08/21
      Vol:
    E102-B No:2
      Page(s):
    241-246

    Multi-static Primary Surveillance Radar (MSPSR) has recently attracted attention as a new surveillance technology for civil aviation. Using multiple receivers, Primary Surveillance Radar (PSR) detection performance can be improved by synthesizing the reflection characteristics which change due to the aircraft's position. In this paper, we report experimental results from our proposed optical-fiber-connected passive PSR system with transmit signal installed at the Sendai Airport in Japan. The signal-to noise ratio of experimental data is evaluated to verify moving target detection. In addition, we confirm the operation of the proposed system using a two-receiver setup, to resemble a conventional multi-static radar. Finally, after applying time correction, the delay of the reflected signal from a stationary target remains within the expected range.

  • A Study on Optimal Beam Patterns for Single User Massive MIMO Transmissions Open Access

    Maki ARAI  Kei SAKAGUCHI  Kiyomichi ARAKI  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2018/07/30
      Vol:
    E102-B No:2
      Page(s):
    324-336

    This paper proposes optimal beam patterns of analog beamforming for SU (Single User) massive MIMO (Multi-Input Multi-Output) transmission systems. For hybrid beamforming in SU massive MIMO systems, there are several design parameters such as beam patterns, the number of beams (streams), the shape of array antennas, and so on. In conventional hybrid beamforming, rectangular patch array antennas implemented on a planar surface with linear phase shift beam patterns have been used widely. However, it remains unclear whether existing configurations are optimal or not. Therefore, we propose a method using OBPB (Optimal Beam Projection Beamforming) for designing configuration parameters of the hybrid beamforming. By using the method, the optimal beam patterns are derived first, and are projected on the assumed surface to calculate the achievable number of streams and the resulting channel capacity. The results indicate OBPB with a spherical surface yields at least 3.5 times higher channel capacity than conventional configurations.

  • Semitransparent Organic Solar Cells with Polyethylenimine Ethoxylated Interfacial Layer Using Lamination Process

    Keisuke SHODA  Masahiro MORIMOTO  Shigeki NAKA  Hiroyuki OKADA  

     
    BRIEF PAPER

      Vol:
    E102-C No:2
      Page(s):
    196-198

    Semitransparent organic solar cells were fabricated using lamination process. The devices were realized by using two independent substrates with transparent indium-tin-oxide electrode. One substrate was coated with poly(ethylenedioxy-thiophene)/poly(styrenesulfonate) layer and active layer of poly(3-hexylthiophene-2,5-diyl) (P3HT) and (6,6)-phenyl-C61 butyric acid methyl ester mixture. Another substrate was coated with ultra-thin polyethylenimine ethoxylated. The two substrates were laminated using hot press system. The device exhibited semitransparency and showed typical photovoltaic characteristics with open voltage of 0.59 V and short circuit current of 2.9 mA/cm2.

  • Emission Enhancement of Water-Soluble Porphyrin Immobilized in DNA Ultrathin Films by Localized Surface Plasmon Resonance of Gold Nanoparticles

    Hiroya MORITA  Hideki KAWAI  Kenji TAKEHARA  Naoki MATSUDA  Toshihiko NAGAMURA  

     
    PAPER

      Vol:
    E102-C No:2
      Page(s):
    100-106

    Photophysical properties of water-soluble porphyrin were studied in aqueous solutions with/without DNA and in DNA solid films. Ultrathin films were prepared from aqueous DNA solutions by a spin-coating method on glass or on gold nanoparticles (AuNPs). Remarkable enhancement of phosphorescence was observed for porphyrin immobilized in DNA films spin-coated on AuNPs, which was attributed to the electric field enhancement and the increased radiative rate by localized surface plasmon resonance of AuNPs.

  • Detection of Human Immunoglobulin G by Transmission Surface Plasmon Resonance Using the In Situ Gold Nanoparticle Growth Method

    Theerasak JUAGWON  Chutiparn LERTVACHIRAPAIBOON  Kazunari SHINBO  Keizo KATO  Toemsak SRIKHIRIN  Tanakorn OSOTCHAN  Akira BABA  

     
    PAPER

      Vol:
    E102-C No:2
      Page(s):
    125-131

    In this work, we report the in situ growth of gold nanoparticles (AuNPs) for the improvement of a transmission surface plasmon resonance (T-SPR) sensor to detect human immunoglobulin G (IgG). Human IgG was immobilized on an activated self-assembled monolayer of 11-mercaptoundecanoic on a gold-coated grating substrate. The T-SPR system was also used to monitor the construction of sensor chips as well as the binding of IgG and anti-IgG conjugated with AuNPs. After specific adsorption with IgG, the T-SPR signal was further enhanced by the in situ growth of AuNPs bound with anti-IgG. Using AuNP conjugation and in situ growth of bound AuNPs, the sensitivity of the IgG immunosensor was improved by two orders of magnitude compared with that without conjugated AuNPs.

  • Organic Thin Film-Assisted Copper Electroless Plating on Flat/Microstructured Silicone Substrates

    Tomoya SATO  Narendra SINGH  Roland HÖNES  Chihiro URATA  Yasutaka MATSUO  Atsushi HOZUMI  

     
    BRIEF PAPER

      Vol:
    E102-C No:2
      Page(s):
    147-150

    Copper (Cu) electroless plating was conducted on planar and microstructured polydimethylsiloxane (PDMS) substrates. In this study, organic thin films terminated with nitrogen (N)-containing groups, e.g. poly (dimethylaminoethyl methacrylate) brush (PDMAEMA), aminopropyl trimethoxysilane monolayer (APTES), and polydopamine (PDA) were used to anchor palladium (Pd) catalyst. While electroless plating was successfully promoted on all sample surfaces, PDMAEMA was found to achieve the best adhesion strength to the PDMS surfaces, compared to APTES- and PDA-covered PDMS substrates, due to covalent bonding, anchoring effects of polymer chains as well as high affinity of N atoms to Pd species. Our process was also successfully applied to the electroless plating of microstructured PDMS substrates.

  • Patterning of OLED Glass Substrate for Improving Light Outcoupling Efficiency

    Savanna LLOYD  Tatsuya TANIGAWA  Heisuke SAKAI  Hideyuki MURATA  

     
    BRIEF PAPER

      Vol:
    E102-C No:2
      Page(s):
    180-183

    In this work, we have successfully patterned OLED glass substrates with a novel Yb-doped femtosecond laser. Such patterns can simultaneously increase the outcoupling efficiency up to 24.4%, as a result of reducing substrate waveguided light by scattering at the substrate/air interface and reduce the viewing angle dependence of the electroluminescent spectra.

  • An Empirical Study of README contents for JavaScript Packages

    Shohei IKEDA  Akinori IHARA  Raula Gaikovina KULA  Kenichi MATSUMOTO  

     
    PAPER-Software Engineering

      Pubricized:
    2018/10/24
      Vol:
    E102-D No:2
      Page(s):
    280-288

    Contemporary software projects often utilize a README.md to share crucial information such as installation and usage examples related to their software. Furthermore, these files serve as an important source of updated and useful documentation for developers and prospective users of the software. Nonetheless, both novice and seasoned developers are sometimes unsure of what is required for a good README file. To understand the contents of README, we investigate the contents of 43,900 JavaScript packages. Results show that these packages contain common content themes (i.e., ‘usage’, ‘install’ and ‘license’). Furthermore, we find that application-specific packages more frequently included content themes such as ‘options’, while library-based packages more frequently included other specific content themes (i.e., ‘install’ and ‘license’).

  • Lightweight Computation of Overlaid Traffic Flows by Shortest Origin-Destination Trips

    Hiroyuki GOTO  Yohei KAKIMOTO  Yoichi SHIMAKAWA  

     
    LETTER-General Fundamentals and Boundaries

      Vol:
    E102-A No:1
      Page(s):
    320-323

    Given a network G(V,E), a lightweight method to calculate overlaid origin-destination (O-D) traffic flows on all edges is developed. Each O-D trip shall select the shortest path. While simple implementations for single-source/all-destination and all-pair trips need O(L·n) and O(L·n2) in worst-case time complexity, respectively, our technique is executed with O(m+n) and O(m+n2), where n=|V|, m=|E|, and L represents the maximum arc length. This improvement is achieved by reusing outcomes of priority queue-based algorithms. Using a GIS dataset of a road network in Tokyo, Japan, the effectiveness of our technique is confirmed.

  • Introduction to Electromagnetic Information Security Open Access

    Yu-ichi HAYASHI  Naofumi HOMMA  

     
    INVITED SURVEY PAPER-Fundamental Theories for Communications

      Pubricized:
    2018/08/17
      Vol:
    E102-B No:1
      Page(s):
    40-50

    With the rising importance of information security, the necessity of implementing better security measures in the physical layer as well as the upper layers is becoming increasing apparent. Given the development of more accurate and less expensive measurement devices, high-performance computers, and larger storage devices, the threat of advanced attacks at the physical level has expanded from the military and governmental spheres to commercial products. In this paper, we review the issue of information security degradation through electromagnetic (EM)-based compromising of security measures in the physical layer (i.e., EM information security). Owing to the invisibility of EM radiation, such attacks can be serious threats. We first introduce the mechanism of information leakage through EM radiation and interference and then present possible countermeasures. Finally, we explain the latest research and standardization trends related to EM information security.

  • Perpendicular-Corporate Feed in a Four-Layer Circularly-Polarized Parallel-Plate Slot Array

    Hisanori IRIE  Takashi TOMURA  Jiro HIROKAWA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2018/07/10
      Vol:
    E102-B No:1
      Page(s):
    137-146

    This paper presents a design for the perpendicular-corporate feed in a four-layer circularly-polarized parallel-plate slot array antenna. We place a dielectric layer with adequate permittivity in the region between the coupling-aperture and the radiating-slot layers to remove x-shaped cavity walls completely in the radiating part of a conventional planar corporate-feed waveguide slot array antenna. To address fabrication constraints, the dielectric layer consists of PTFE and air. It excites a strong standing wave in the region and so provides 2×2-element subarrays with uniform excitation. None of the slot layers are in electrical contact due to air gaps between the slot layers. The four-layer structure with apertures for circular polarization contributes to wideband design for axial ratios because of the eigenmodes in the desired band. We realize an 11.9% bandwidth for axial ratios of less than 3.0dB as confirmed by measurements in the 60GHz band. At the design frequency, the measured realized gain is 32.7dBi with an antenna efficiency of 75.5%.

  • On the Separating Redundancy of the Duals of First-Order Generalized Reed-Muller Codes

    Haiyang LIU  Yan LI  Lianrong MA  

     
    LETTER-Coding Theory

      Vol:
    E102-A No:1
      Page(s):
    310-315

    The separating redundancy is an important property in the analysis of the error-and-erasure decoding of a linear block code. In this work, we investigate the separating redundancy of the duals of first-order generalized Reed-Muller (GRM) codes, a class of nonbinary linear block codes that have nice algebraic properties. The dual of a first-order GRM code can be specified by two positive integers m and q and denoted by R(m,q), where q is the power of a prime number and q≠2. We determine the first separating redundancy value of R(m,q) for any m and q. We also determine the second separating redundancy values of R(m,q) for any q and m=1 and 2. For m≥3, we set up a binary integer linear programming problem, the optimum of which gives a lower bound on the second separating redundancy of R(m,q).

  • Low-Hit-Zone Frequency-Hopping Sequence Sets with Optimal Periodic Partial Hamming Correlation Properties

    Limengnan ZHOU  Hongyu HAN  Xing LIU  

     
    LETTER-Spread Spectrum Technologies and Applications

      Vol:
    E102-A No:1
      Page(s):
    316-319

    Frequency-hopping sequence (FHS) sets with low-hit-zone (LHZ) have Hamming correlations maintained at a low level as long as the relative time delay between different sequences are limited in a zone around the origin, and thus can be well applied in quasi-synchronous (QS) frequency-hopping multiple-access (FHMA) systems to reduce the mutual interference between different users. Moreover, the periodic partial Hamming correlation (PPHC) properties of employed LHZ-FHS sets usually act as evaluation criterions for the performances of QS-FHMA systems in practice. In this letter, a new class of LHZ-FHS sets is constructed via interleaving techniques. Furthermore, these new LHZ-FHS sets also possess optimal PPHC properties and parameters not included in the related literature.

  • Passive Optical Metro Network Based on NG-PON2 System to Support Cloud Edges

    Kyota HATTORI  Masahiro NAKAGAWA  Masaru KATAYAMA  Jun-ichi KANI  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2018/06/28
      Vol:
    E102-B No:1
      Page(s):
    88-96

    The traffic of the future metro network will dynamically change not only in volume but also in destination to support the application of virtualization technology to network edge equipment such as cloud edges to achieve cost-effectiveness. Therefore, the future metro network will have to accommodate traffic cost-effectively, even though both the traffic volume and the traffic destination will change dynamically. To handle to this trend, in this paper, we propose a future metro network architecture based on Next-Generation Passive Optical Network Stage 2 systems that offers cost-effectiveness while supporting virtual machine migration of cloud edges. The basic idea of the proposed method is sharing a burst-mode receiver between the continuous-mode transmitters and burst-mode transmitters. In this paper, we show the feasibility and effectiveness of the proposed method with experiments on prototype systems, and simulations for the preliminary evaluation of network capital expenditure.

  • Real-Time Sparse Visual Tracking Using Circulant Reverse Lasso Model

    Chenggang GUO  Dongyi CHEN  Zhiqi HUANG  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2018/10/09
      Vol:
    E102-D No:1
      Page(s):
    175-184

    Sparse representation has been successfully applied to visual tracking. Recent progresses in sparse tracking are mainly made within the particle filter framework. However, most sparse trackers need to extract complex feature representations for each particle in the limited sample space, leading to expensive computation cost and yielding inferior tracking performance. To deal with the above issues, we propose a novel sparse tracking method based on the circulant reverse lasso model. Benefiting from the properties of circulant matrices, densely sampled target candidates are implicitly generated by cyclically shifting the base feature descriptors, and then embedded into a reverse sparse reconstruction model as a dictionary to encode a robust appearance template. The alternating direction method of multipliers is employed for solving the reverse sparse model and the optimization process can be efficiently solved in the frequency domain, which enables the proposed tracker to run in real-time. The calculated sparse coefficient map represents the similarity scores between the template and circular shifted samples. Thus the target location can be directly predicted according to the coordinates of the peak coefficient. A scale-aware template updating strategy is combined with the correlation filter template learning to take into account both appearance deformations and scale variations. Both quantitative and qualitative evaluations on two challenging tracking benchmarks demonstrate that the proposed algorithm performs favorably against several state-of-the-art sparse representation based tracking methods.

801-820hit(8249hit)