The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] PA(8249hit)

861-880hit(8249hit)

  • Parallel Precomputation with Input Value Prediction for Model Predictive Control Systems

    Satoshi KAWAKAMI  Takatsugu ONO  Toshiyuki OHTSUKA  Koji INOUE  

     
    PAPER-Real-time Systems

      Pubricized:
    2018/09/18
      Vol:
    E101-D No:12
      Page(s):
    2864-2877

    We propose a parallel precomputation method for real-time model predictive control. The key idea is to use predicted input values produced by model predictive control to solve an optimal control problem in advance. It is well known that control systems are not suitable for multi- or many-core processors because feedback-loop control systems are inherently based on sequential operations. However, since the proposed method does not rely on conventional thread-/data-level parallelism, it can be easily applied to such control systems without changing the algorithm in applications. A practical evaluation using three real-world model predictive control system simulation programs demonstrates drastic performance improvement without degrading control quality offered by the proposed method.

  • The Panpositionable Pancyclicity of Locally Twisted Cubes

    Hon-Chan CHEN  

     
    PAPER-Graph Algorithms

      Pubricized:
    2018/09/18
      Vol:
    E101-D No:12
      Page(s):
    2902-2907

    In a multiprocessor system, processors are connected based on various types of network topologies. A network topology is usually represented by a graph. Let G be a graph and u, v be any two distinct vertices of G. We say that G is pancyclic if G has a cycle C of every length l(C) satisfying 3≤l(C)≤|V(G)|, where |V(G)| denotes the total number of vertices in G. Moreover, G is panpositionably pancyclic from r if for any integer m satisfying $r leq m leq rac{|V(G)|}{2}$, G has a cycle C containing u and v such that dC(u,v)=m and 2m≤l(C)≤|V(G)|, where dC(u,v) denotes the distance of u and v in C. In this paper, we investigate the panpositionable pancyclicity problem with respect to the n-dimensional locally twisted cube LTQn, which is a popular topology derived from the hypercube. Let D(LTQn) denote the diameter of LTQn. We show that for n≥4 and for any integer m satisfying $D(LTQ_n) + 2 leq m leq rac{|V(LTQ_n)|}{2}$, there exists a cycle C of LTQn such that dC(u,v)=m, where (i) 2m+1≤l(C)≤|V(LTQn)| if m=D(LTQn)+2 and n is odd, and (ii) 2m≤l(C)≤|V(LTQn)| otherwise. This improves on the recent result that u and v can be positioned with a given distance on C only under the condition that l(C)=|V(LTQn)|. In parallel and distributed computing, if cycles of different lengths can be embedded, we can adjust the number of simulated processors and increase the flexibility of demand. This paper demonstrates that in LTQn, the cycle embedding containing any two distinct vertices with a feasible distance is extremely flexible.

  • Cycle Embedding in Generalized Recursive Circulant Graphs

    Shyue-Ming TANG  Yue-Li WANG  Chien-Yi LI  Jou-Ming CHANG  

     
    PAPER-Graph Algorithms

      Pubricized:
    2018/09/18
      Vol:
    E101-D No:12
      Page(s):
    2916-2921

    Generalized recursive circulant graphs (GRCGs for short) are a generalization of recursive circulant graphs and provide a new type of topology for interconnection networks. A graph of n vertices is said to be s-pancyclic for some $3leqslant sleqslant n$ if it contains cycles of every length t for $sleqslant tleqslant n$. The pancyclicity of recursive circulant graphs was investigated by Araki and Shibata (Inf. Process. Lett. vol.81, no.4, pp.187-190, 2002). In this paper, we are concerned with the s-pancyclicity of GRCGs.

  • Enhancing Job Scheduling on Inter-Rackscale Datacenters with Free-Space Optical Links

    Yao HU  Michihiro KOIBUCHI  

     
    PAPER-Information networks

      Pubricized:
    2018/09/18
      Vol:
    E101-D No:12
      Page(s):
    2922-2932

    Datacenter growth in traffic and scale is driving innovations in constructing tightly-coupled facilities with low-latency communication for different specific applications. A famous custom design is rackscale (RS) computing by gathering key server resource components into different resource pools. Such a resource-pooling implementation requires a new software stack to manage resource discovery, resource allocation and data communication. The reconfiguration of interconnection networks on their components is potentially needed to support the above demand in RS. In this context as an evolution of the original RS architecture the inter-rackscale (IRS) architecture, which disaggregates hardware components into different racks according to their own areas, has been proposed. The heart of IRS is to use a limited number of free-space optics (FSO) channels for wireless connections between different resource racks, via which selected pairs of racks can communicate directly and thus resource-pooling requirements are met without additional software management. In this study we evaluate the influences of FSO links on IRS networks. Evaluation results show that FSO links reduce average communication hop count for user jobs, which is close to the best possible value of 2 hops and thus provides comparable benchmark performance to that of the counterpart RS architecture. In addition, if four FSO terminals per rack are allowed, the CPU/SSD (GPU) interconnection latency is reduced by 25.99% over Fat-tree and by 67.14% over 2-D Torus. We also present the advantage of an FSO-equipped IRS system in average turnaround time of dispatched jobs for given sets of benchmark workloads.

  • A Low-Complexity Path Delay Searching Method in Sparse Channel Estimation for OFDM Systems

    Kee-Hoon KIM  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2018/05/11
      Vol:
    E101-B No:11
      Page(s):
    2297-2303

    By exploiting the inherent sparsity of wireless channels, the channel estimation in an orthogonal frequency division multiplexing (OFDM) system can be cast as a compressed sensing (CS) problem to estimate the channel more accurately. Practically, matching pursuit algorithms such as orthogonal matching pursuit (OMP) are used, where path delays of the channel is guessed based on correlation values for every quantized delay with residual. This full search approach requires a predefined grid of delays with high resolution, which induces the high computational complexity because correlation values with residual at a huge number of grid points should be calculated. Meanwhile, the correlation values with high resolution can be obtained by interpolation between the correlation values at a low resolution grid. Also, the interpolation can be implemented with a low pass filter (LPF). By using this fact, in this paper we substantially reduce the computational complexity to calculate the correlation values in channel estimation using CS.

  • A Line Coding for Digital RF Transmitter Using a 1-Bit Band-Pass Delta-Sigma Modulator

    Takashi MAEHATA  Suguru KAMEDA  Noriharu SUEMATSU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2018/05/16
      Vol:
    E101-B No:11
      Page(s):
    2313-2319

    The 1-bit digital radio frequency (DRF) transmitter using a band-pass delta-sigma modulator (BP-DSM) can output a radio frequency (RF) signal carrying a binary data stream with a constant data rate regardless of the carrier frequency, which makes it possible to transmit RF signals over digital optical links with a constant bit rate. However, the optical link requires a line coding, such as 8B10B or 64B66B, to constrain runlength and disparity, and the line coding corrupts the DRF power spectrum owing to additional or encoded data. This paper proposes a new line coding for BP-DSM, which is able to control the runlength and the disparity of the 1-bit data stream by adding a notch filter to the BP-DSM that suppresses the low frequency components. The notch filter stimulates the data change and balances the direct current (DC) components. It is demonstrated that the proposed line coding shortens the runlength from 50 bits to less than 8 bits and reduces the disparity from several thousand bits to 5 bits when the 1-bit DRF transmitter outputs an LTE signal with 5 MHz bandwidth, when using carrier frequencies from 0.5GHz to 2GHz and an output power variation of 60dB.

  • Sphere Packing Bound and Gilbert-Varshamov Bound for b-Symbol Read Channels

    Seunghoan SONG  Toru FUJIWARA  

     
    PAPER-Coding Theory

      Vol:
    E101-A No:11
      Page(s):
    1915-1924

    A b-symbol read channel is a channel model in which b consecutive symbols are read at once. As special cases, it includes a symbol-pair read channel (b=2) and an ordinary channel (b=1). The sphere packing bound, the Gilbert-Varshamov (G-V) bound, and the asymptotic G-V bound for symbol-pair read channels are known for b=1 and 2. In this paper, we derive these three bounds for b-symbol read channels with b≥1. From analysis of the proposed G-V bound, it is confirmed that the achievable rate is higher for b-symbol read channels compared with those for ordinary channels based on the Hamming metric. Furthermore, it is shown that the optimal value of b that maximizes the asymptotic G-V bound is finitely determined depending on the fractional minimum distance.

  • Two-Layer Lossless HDR Coding Using Histogram Packing Technique with Backward Compatibility to JPEG

    Osamu WATANABE  Hiroyuki KOBAYASHI  Hitoshi KIYA  

     
    PAPER-Image, Multimedia Environment Tech

      Vol:
    E101-A No:11
      Page(s):
    1823-1831

    An efficient two-layer coding method using the histogram packing technique with the backward compatibility to the legacy JPEG is proposed in this paper. The JPEG XT, which is the international standard to compress HDR images, adopts two-layer coding scheme for backward compatibility to the legacy JPEG. However, this two-layer coding structure does not give better lossless performance than the other existing methods for HDR image compression with single-layer structure. Moreover, the lossless compression of the JPEG XT has a problem on determination of the coding parameters; The lossless performance is affected by the input images and/or the parameter values. That is, finding appropriate combination of the values is necessary to achieve good lossless performance. It is firstly pointed out that the histogram packing technique considering the histogram sparseness of HDR images is able to improve the performance of lossless compression. Then, a novel two-layer coding with the histogram packing technique and an additional lossless encoder is proposed. The experimental results demonstrate that not only the proposed method has a better lossless compression performance than that of the JPEG XT, but also there is no need to determine image-dependent parameter values for good compression performance without losing the backward compatibility to the well known legacy JPEG standard.

  • Key Parameter Estimation for Pulse Radar Signal Intercepted by Non-Cooperative Nyquist Folding Receiver

    Zhaoyang QIU  Qi ZHANG  Jun ZHU  Bin TANG  

     
    LETTER-Digital Signal Processing

      Vol:
    E101-A No:11
      Page(s):
    1934-1939

    Nyquist folding receiver (NYFR) is a novel reconnaissance receiving architecture and it can realize wideband receiving with small amount of equipment. As a tradeoff of non-cooperative wideband receiving, the NYFR output will add an unknown key parameter that is called Nyquist zone (NZ) index. In this letter, we concentrate on the NZ index estimation of the NYFR output. Focusing on the basic pulse radar signals, the constant frequency signal, the binary phase coded signal and the linear frequency modulation signal are considered. The matching component function is proposed to estimate the NZ indexes of the NYFR outputs without the prior information of the signal modulation type. In addition, the relations between the matching component function and the parameters of the NYFR are discussed. Simulation results demonstrate the efficacy of the proposed method.

  • Efficient Methods of Inactive Regions Padding for Segmented Sphere Projection (SSP) of 360 Video

    Yong-Uk YOON  Yong-Jo AHN  Donggyu SIM  Jae-Gon KIM  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2018/08/20
      Vol:
    E101-D No:11
      Page(s):
    2836-2839

    In this letter, methods of inactive regions padding for Segmented Sphere Projection (SSP) of 360 videos are proposed. A 360 video is projected onto a 2D plane to be coded with diverse projection formats. Some projection formats have inactive regions in the converted 2D plane such as SSP. The inactive regions may cause visual artifacts as well as coding efficiency decrease due to discontinuous boundaries between active and inactive regions. In this letter, to improve coding efficiency and reduce visual artifacts, the inactive regions are padded by using two types of adjacent pixels in either rectangular-face or circle-face boundaries. By padding the inactive regions with the highly correlated adjacent pixels, the discontinuities between active and inactive regions are reduced. The experimental results show that, in terms of end-to-end Weighted to Spherically uniform PSNR (WS-PSNR), the proposed methods achieve 0.3% BD-rate reduction over the existing padding method for SSP. In addition, the visual artifacts along the borders between discontinuous faces are noticeably reduced.

  • Single Image Haze Removal Using Hazy Particle Maps

    Geun-Jun KIM  Seungmin LEE  Bongsoon KANG  

     
    LETTER-Image

      Vol:
    E101-A No:11
      Page(s):
    1999-2002

    Hazes with various properties spread widely across flat areas with depth continuities and corner areas with depth discontinuities. Removing haze from a single hazy image is difficult due to its ill-posed nature. To solve this problem, this study proposes a modified hybrid median filter that performs a median filter to preserve the edges of flat areas and a hybrid median filter to preserve depth discontinuity corners. Recovered scene radiance, which is obtained by removing hazy particles, restores image visibility using adaptive nonlinear curves for dynamic range expansion. Using comparative studies and quantitative evaluations, this study shows that the proposed method achieves similar or better results than those of other state-of-the-art methods.

  • Secure Spatial Modulation Based on Dynamic Multi-Parameter WFRFT

    Qian CHENG  Jiang ZHU  Junshan LUO  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2018/05/08
      Vol:
    E101-B No:11
      Page(s):
    2304-2312

    A novel secure spatial modulation (SM) scheme based on dynamic multi-parameter weighted-type fractional Fourier transform (WFRFT), abbreviated as SMW, is proposed. Each legitimate transmitter runs WFRFT on the spatially modulated super symbols before transmit antennas, the parameters of which are dynamically updated using the transmitting bits. Each legitimate receiver runs inverse WFRFT to demodulate the received signals, the parameters of which are also dynamically generated using the recovered bits with the same updating strategies as the transmitter. The dynamic update strategies of WFRFT parameters are designed. As a passive eavesdropper is ignorant of the initial WFRFT parameters and the dynamic update strategies, which are indicated by the transmitted bits, it cannot recover the original information, thereby guaranteeing the communication security between legitimate transmitter and receiver. Besides, we formulate the maximum likelihood (ML) detector and analyze the secrecy capacity and the upper bound of BER. Simulations demonstrate that the proposed SMW scheme can achieve a high level of secrecy capacity and maintain legitimate receiver's low BER performance while deteriorating the eavesdropper's BER.

  • Simultaneous Wireless Information and Power Transfer Solutions for Energy-Harvesting Fairness in Cognitive Multicast Systems

    Pham-Viet TUAN  Insoo KOO  

     
    LETTER-Mobile Information Network and Personal Communications

      Vol:
    E101-A No:11
      Page(s):
    1988-1992

    In this letter, we consider the harvested-energy fairness problem in cognitive multicast systems with simultaneous wireless information and power transfer. In the cognitive multicast system, a cognitive transmitter with multi-antenna sends the same information to cognitive users in the presence of licensed users, and cognitive users can decode information and harvest energy with a power-splitting structure. The harvested-energy fairness problem is formulated and solved by using two proposed algorithms, which are based on semidefinite relaxation with majorization-minimization method, and sequential parametric convex approximation with feasible point pursuit technique, respectively. Finally, the performances of the proposed solutions and baseline schemes are verified by simulation results.

  • A Low-Complexity and Fast Convergence Message Passing Receiver Based on Partial Codeword Transmission for SCMA Systems

    Xuewan ZHANG  Wenping GE  Xiong WU  Wenli DAI  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Pubricized:
    2018/05/16
      Vol:
    E101-B No:11
      Page(s):
    2259-2266

    Sparse code multiple access (SCMA) based on the message passing algorithm (MPA) for multiuser detection is a competitive non-orthogonal multiple access technique for fifth-generation wireless communication networks Among the existing multiuser detection schemes for uplink (UP) SCMA systems, the serial MPA (S-MPA) scheme, where messages are updated sequentially, generally converges faster than the conventional MPA (C-MPA) scheme, where all messages are updated in a parallel manner. In this paper, the optimization of message scheduling in the S-MPA scheme is proposed. Firstly, some statistical results for the probability density function (PDF) of the received signal are obtained at various signal-to-noise ratios (SNR) by using the Monte Carlo method. Then, based on the non-orthogonal property of SCMA, the data mapping relationship between resource nodes and user nodes is comprehensively analyzed. A partial codeword transmission of S-MPA (PCTS-MPA) with threshold decision scheme of PDF is proposed and verified. Simulations show that the proposed PCTS-MPA not only reduces the complexity of MPA without changing the bit error ratio (BER), but also has a faster convergence than S-MPA, especially at high SNR values.

  • Optimal Design of Adaptive Intra Predictors Based on Sparsity Constraint

    Yukihiro BANDOH  Yuichi SAYAMA  Seishi TAKAMURA  Atsushi SHIMIZU  

     
    PAPER-Image

      Vol:
    E101-A No:11
      Page(s):
    1795-1805

    It is essential to improve intra prediction performance to raise the efficiency of video coding. In video coding standards such as H.265/HEVC, intra prediction is seen as an extension of directional prediction schemes, examples include refinement of directions, planar extension, filtering reference sampling, and so on. From the view point of reducing prediction error, some improvements on intra prediction for standardized schemes have been suggested. However, on the assumption that the correlation between neighboring pixels are static, these conventional methods use pre-defined predictors regardless of the image being encoded. Therefore, these conventional methods cannot reduce prediction error if the images break the assumption made in prediction design. On the other hand, adaptive predictors that change the image being encoded may offer poor coding efficiency due to the overhead of the additional information needed for adaptivity. This paper proposes an adaptive intra prediction scheme that resolves the trade-off between prediction error and adaptivity overhead. The proposed scheme is formulated as a constrained optimization problem that minimizes prediction error under sparsity constraints on the prediction coefficients. In order to solve this problem, a novel solver is introduced as an extension of LARS for multi-class support. Experiments show that the proposed scheme can reduce the amount of encoded bits by 1.21% to 3.24% on average compared to HM16.7.

  • Deterministic Constructions of Compressed Sensing Matrices Based on Affine Singular Linear Space over Finite Fields

    Gang WANG  Min-Yao NIU  Jian GAO  Fang-Wei FU  

     
    LETTER-Coding Theory

      Vol:
    E101-A No:11
      Page(s):
    1957-1963

    Compressed sensing theory provides a new approach to acquire data as a sampling technique and makes sure that a sparse signal can be reconstructed from few measurements. The construction of compressed sensing matrices is a main problem in compressed sensing theory (CS). In this paper, the deterministic constructions of compressed sensing matrices based on affine singular linear space over finite fields are presented and a comparison is made with the compressed sensing matrices constructed by DeVore based on polynomials over finite fields. By choosing appropriate parameters, our sparse compressed sensing matrices are superior to the DeVore's matrices. Then we use a new formulation of support recovery to recover the support sets of signals with sparsity no more than k on account of binary compressed sensing matrices satisfying disjunct and inclusive properties.

  • Characterization of Broadband Mobile Communication Channel in 200MHz Band Based on Saleh-Valenzuela Model

    Hiroki OHARA  Hirokazu SAWADA  Masayuki OODO  Fumihide KOJIMA  Hiroshi HARADA  Kentaro SAITO  Jun-ichi TAKADA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2018/05/11
      Vol:
    E101-B No:11
      Page(s):
    2277-2288

    Digitization of analog terrestrial TV broadcasting has recently been accelerated in many countries, and the effective utilization of vacant frequencies has also been investigated for new systems in each country. In Japan, a portion of vacant frequencies in the VHF-high band was allocated to the public broadband mobile communication (PBB) system. To evaluate the current PBB system and develop future broadband communication systems in this band, it is important to analyze the propagation channel more accurately. In this study, we characterize the propagation channel for 200MHz band broadband mobile communication systems, using measured channel impulse responses (CIRs). In the characterization process, the Saleh-Valenzuela (S-V) model is utilized to extract channel model parameters statistically. When evaluating the fluctuation of path power gain, we also propose to model the fluctuation of path power gain using the generalized extreme value distribution instead of the conventional log-normal distribution. The extracted CIR model parameters are validated by cumulative distribution function of root-means-square delay spread and maximum excess delay, comparing simulation result to measurement result. From the extracted CIR model parameters, we clarified the characteristics of 200MHz band broadband mobile communication systems in non-line-of-sight environments based on S-V model with the proposed channel model.

  • Formation of Polymer Wall Structure on Plastic Substrate by Transfer Method of Fluororesin for Flexible Liquid Crystal Displays

    Seiya KAWAMORITA  Yosei SHIBATA  Takahiro ISHINABE  Hideo FUJIKAKE  

     
    BRIEF PAPER

      Vol:
    E101-C No:11
      Page(s):
    888-891

    In this paper, we examined the transfer method of fluororesin as the novel formation method of polymer wall in order to realize the lattice-shaped polymer walls without patterned light irradiation using photomask. We clarified that the transfer method was effective for formation of polymer wall structure on flexible substrate.

  • High Speed and Narrow-Bandpass Liquid Crystal Filter for Real-Time Multi Spectral Imaging Systems

    Kohei TERASHIMA  Kazuhiro WAKO  Yasuyuki FUJIHARA  Yusuke AOYAGI  Maasa MURATA  Yosei SHIBATA  Shigetoshi SUGAWA  Takahiro ISHINABE  Rihito KURODA  Hideo FUJIKAKE  

     
    BRIEF PAPER

      Vol:
    E101-C No:11
      Page(s):
    897-900

    We have developed the high speed bandpass liquid crystal filter with narrow full width at half maximum (FWHM) of 5nm for real-time multi spectral imaging systems. We have successfully achieved short wavelength-switching time of 30ms by the optimization of phase retardation of thin liquid crystal cells.

  • Accelerating a Lloyd-Type k-Means Clustering Algorithm with Summable Lower Bounds in a Lower-Dimensional Space

    Kazuo AOYAMA  Kazumi SAITO  Tetsuo IKEDA  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2018/08/02
      Vol:
    E101-D No:11
      Page(s):
    2773-2783

    This paper presents an efficient acceleration algorithm for Lloyd-type k-means clustering, which is suitable to a large-scale and high-dimensional data set with potentially numerous classes. The algorithm employs a novel projection-based filter (PRJ) to avoid unnecessary distance calculations, resulting in high-speed performance keeping the same results as a standard Lloyd's algorithm. The PRJ exploits a summable lower bound on a squared distance defined in a lower-dimensional space to which data points are projected. The summable lower bound can make the bound tighter dynamically by incremental addition of components in the lower-dimensional space within each iteration although the existing lower bounds used in other acceleration algorithms work only once as a fixed filter. Experimental results on large-scale and high-dimensional real image data sets demonstrate that the proposed algorithm works at high speed and with low memory consumption when large k values are given, compared with the state-of-the-art algorithms.

861-880hit(8249hit)