The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] PA(8249hit)

661-680hit(8249hit)

  • Target-Adapted Subspace Learning for Cross-Corpus Speech Emotion Recognition

    Xiuzhen CHEN  Xiaoyan ZHOU  Cheng LU  Yuan ZONG  Wenming ZHENG  Chuangao TANG  

     
    LETTER-Speech and Hearing

      Pubricized:
    2019/08/26
      Vol:
    E102-D No:12
      Page(s):
    2632-2636

    For cross-corpus speech emotion recognition (SER), how to obtain effective feature representation for the discrepancy elimination of feature distributions between source and target domains is a crucial issue. In this paper, we propose a Target-adapted Subspace Learning (TaSL) method for cross-corpus SER. The TaSL method trys to find a projection subspace, where the feature regress the label more accurately and the gap of feature distributions in target and source domains is bridged effectively. Then, in order to obtain more optimal projection matrix, ℓ1 norm and ℓ2,1 norm penalty terms are added to different regularization terms, respectively. Finally, we conduct extensive experiments on three public corpuses, EmoDB, eNTERFACE and AFEW 4.0. The experimental results show that our proposed method can achieve better performance compared with the state-of-the-art methods in the cross-corpus SER tasks.

  • Speeding Up Revocable Group Signature with Compact Revocation List Using Vector Commitments

    Yasuyuki SEITA  Toru NAKANISHI  

     
    PAPER-Cryptography

      Vol:
    E102-A No:12
      Page(s):
    1676-1687

    In ID-based user authentications, a privacy problem can occur, since the service provider (SP) can accumulate the user's access history from the user ID. As a solution to that problem, group signatures have been researched. One of important issues in the group signatures is the user revocation. Previously, an efficient revocable scheme with signing/verification of constant complexity was proposed by Libert et al. In this scheme, users are managed by a binary tree, and a list of data for revoked users, called a revocation list (RL), is used for revocation. However, the scheme suffers from the large RL. Recently, an extended scheme has been proposed by Sadiah and Nakanishi, where the RL size is reduced by compressing RL. On the other hand, there is a problem that some overhead occurs in the authentication as a price for reducing the size of RL. In this paper, we propose an extended scheme where the authentication is speeded up by reducing the number of Groth-Sahai (GS) proofs. Furthermore, we implemented it on a PC to show the effectiveness. The verification time is about 30% shorter than that of the previous scheme by Sadiah and Nakanishi.

  • Two-Layer Near-Lossless HDR Coding Using Zero-Skip Quantization with Backward Compatibility to JPEG

    Hiroyuki KOBAYASHI  Osamu WATANABE  Hitoshi KIYA  

     
    PAPER-Image

      Vol:
    E102-A No:12
      Page(s):
    1842-1848

    We propose an efficient two-layer near-lossless coding method using an extended histogram packing technique with backward compatibility to the legacy JPEG standard. The JPEG XT, which is the international standard to compress HDR images, adopts a two-layer coding method for backward compatibility to the legacy JPEG standard. However, there are two problems with this two-layer coding method. One is that it does not exhibit better near-lossless performance than other methods for HDR image compression with single-layer structure. The other problem is that the determining the appropriate values of the coding parameters may be required for each input image to achieve good compression performance of near-lossless compression with the two-layer coding method of the JPEG XT. To solve these problems, we focus on a histogram-packing technique that takes into account the histogram sparseness of HDR images. We used zero-skip quantization, which is an extension of the histogram-packing technique proposed for lossless coding, for implementing the proposed near-lossless coding method. The experimental results indicate that the proposed method exhibits not only a better near-lossless compression performance than that of the two-layer coding method of the JPEG XT, but also there are no issue regarding the combination of parameter values without losing backward compatibility to the JPEG standard.

  • Passage of Faulty Nodes: A Novel Approach for Fault-Tolerant Routing on NoCs

    Yota KUROKAWA  Masaru FUKUSHI  

     
    PAPER

      Vol:
    E102-A No:12
      Page(s):
    1702-1710

    This paper addresses the problem of developing an efficient fault-tolerant routing method for 2D mesh Network-on-Chips (NoCs) to realize dependable and high performance many core systems. Existing fault-tolerant routing methods have two critical problems of high communication latency and low node utilization. Unlike almost all existing methods where packets always detour faulty nodes, we propose a novel and unique approach that packets can pass through faulty nodes. For this approach, we enhance the common NoC architecture by adding switches and links around each node and propose a fault-tolerant routing method with no virtual channels based on the well-known simple XY routing method. Simulation results show that the proposed method reduces average communication latency by about 97.1% compared with the existing method, without sacrificing fault-free nodes.

  • Parameter Estimation of Fractional Bandlimited LFM Signals Based on Orthogonal Matching Pursuit Open Access

    Xiaomin LI  Huali WANG  Zhangkai LUO  

     
    PAPER-Digital Signal Processing

      Vol:
    E102-A No:11
      Page(s):
    1448-1456

    Parameter estimation theorems for LFM signals have been developed due to the advantages of fractional Fourier transform (FrFT). The traditional estimation methods in the fractional Fourier domain (FrFD) are almost based on two-dimensional search which have the contradiction between estimation performance and complexity. In order to solve this problem, we introduce the orthogonal matching pursuit (OMP) into the FrFD, propose a modified optimization method to estimate initial frequency and final frequency of fractional bandlimited LFM signals. In this algorithm, the differentiation fractional spectrum which is used to form observation matrix in OMP is derived from the spectrum analytical formulations of the LFM signal, and then, based on that the LFM signal has approximate rectangular spectrum in the FrFD and the correlation between the LFM signal and observation matrix yields a maximal value at the edge of the spectrum (see Sect.3.3 for details), the edge spectrum information can be extracted by OMP. Finally, the estimations of initial frequency and final frequency are obtained through multiplying the edge information by the sampling frequency resolution. The proposed method avoids reconstruction and the traditional peak-searching procedure, and the iterations are needed only twice. Thus, the computational complexity is much lower than that of the existing methods. Meanwhile, Since the vectors at the initial frequency and final frequency points both have larger modulus, so that the estimations are closer to the actual values, better normalized root mean squared error (NRMSE) performance can be achieved. Both theoretical analysis and simulation results demonstrate that the proposed algorithm bears a relatively low complexity and its estimation precision is higher than search-based and reconstruction-based algorithms.

  • Improving Slice-Based Model for Person Re-ID with Multi-Level Representation and Triplet-Center Loss

    Yusheng ZHANG  Zhiheng ZHOU  Bo LI  Yu HUANG  Junchu HUANG  Zengqun CHEN  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2019/08/19
      Vol:
    E102-D No:11
      Page(s):
    2230-2237

    Person Re-Identification has received extensive study in the past few years and achieves impressive progress. Recent outstanding methods extract discriminative features by slicing feature maps of deep neural network into several stripes. Still there have improvement on feature fusion and metric learning strategy which can help promote slice-based methods. In this paper, we propose a novel framework that is end-to-end trainable, called Multi-level Slice-based Network (MSN), to capture features both in different levels and body parts. Our model consists of a dual-branch network architecture, one branch for global feature extraction and the other branch for local ones. Both branches process multi-level features using pyramid feature alike module. By concatenating the global and local features, distinctive features are exploited and properly compared. Also, our proposed method creatively introduces a triplet-center loss to elaborate combined loss function, which helps train the joint-learning network. By demonstrating the comprehensive experiments on the mainstream evaluation datasets including Market-1501, DukeMTMC, CUHK03, it indicates that our proposed model robustly achieves excellent performance and outperforms many of existing approaches. For example, on DukeMTMC dataset in single-query mode, we obtain a great result of Rank-1/mAP =85.9%(+1.0%)/74.2%(+4.7%).

  • Effective Direction-of-Arrival Estimation Algorithm by Exploiting Fourier Transform for Sparse Array

    Zhenyu WEI  Wei WANG  Ben WANG  Ping LIU  Linshu GONG  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2019/05/16
      Vol:
    E102-B No:11
      Page(s):
    2159-2166

    Sparse arrays can usually achieve larger array apertures than uniform linear arrays (ULA) with the same number of physical antennas. However, the conventional direction-of-arrival (DOA) estimation algorithms for sparse arrays usually require the spatial smoothing operation to recover the matrix rank which inevitably involves heavy computational complexity and leads to a reduction in the degrees-of-freedom (DOFs). In this paper, a low-complex DOA estimation algorithm by exploiting the discrete Fourier transform (DFT) is proposed. Firstly, the spatial spectrum of the virtual array constructed from the sparse array is established by exploiting the DFT operation. The initial DOA estimation can obtain directly by searching the peaks in the DFT spectrum. However, since the number of array antennas is finite, there exists spectrum power leakage which will cause the performance degradation. To further improve the angle resolution, an iterative process is developed to suppress the spectrum power leakage. Thus, the proposed algorithm does not require the spatial smoothing operation and the computational complexity is reduced effectively. In addition, due to the extention of DOF with the application of the sparse arrays, the proposed algorithm can resolve the underdetermined DOA estimation problems. The superiority of the proposed algorithm is demonstrated by simulation results.

  • Low Complexity and Low Power Sense-Amplifier Based Flip-Flop Design

    Po-Yu KUO  Chia-Hsin HSIEH  Jin-Fa LIN  Ming-Hwa SHEU  Yi-Ting HUNG  

     
    PAPER-Electronic Circuits

      Pubricized:
    2019/08/05
      Vol:
    E102-C No:11
      Page(s):
    833-838

    A novel low power sense-amplifier based flip-flop (FF) is presented. By using a simplified SRAM based latch design and pass transistor logic (PTL) circuit scheme, the transistor-count of the FF design is greatly reduced as well as leakage power performance. The performance claims are verified through extensive post-layout simulations. Compared to the conventional sense-amplifier FF design, the proposed circuit achieves 19.6% leakage reduction. Moreover, the delay, and area are reduced by 21.8% and 31%, respectively. The performance edge becomes even better when the flip-flop is integrated in N-bit register file.

  • Multi-Hypothesis Prediction Scheme Based on the Joint Sparsity Model Open Access

    Can CHEN  Chao ZHOU  Jian LIU  Dengyin ZHANG  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2019/08/05
      Vol:
    E102-D No:11
      Page(s):
    2214-2220

    Distributed compressive video sensing (DCVS) has received considerable attention due to its potential in source-limited communication, e.g., wireless video sensor networks (WVSNs). Multi-hypothesis (MH) prediction, which treats the target block as a linear combination of hypotheses, is a state-of-the-art technique in DCVS. The common approach is under the supposition that blocks that are dissimilar from the target block are given lower weights than blocks that are more similar. This assumption can yield acceptable reconstruction quality, but it is not suitable for scenarios with more details. In this paper, based on the joint sparsity model (JSM), the authors present a Tikhonov-regularized MH prediction scheme in which the most similar block provides the similar common portion and the others blocks provide respective unique portions, differing from the common supposition. Specifically, a new scheme for generating hypotheses and a Euclidean distance-based metric for the regularized term are proposed. Compared with several state-of-the-art algorithms, the authors show the effectiveness of the proposed scheme when there are a limited number of hypotheses.

  • An SBL-Based Coherent Source Localization Method Using Virtual Array Output Open Access

    Zeyun ZHANG  Xiaohuan WU  Chunguo LI  Wei-Ping ZHU  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2019/05/16
      Vol:
    E102-B No:11
      Page(s):
    2151-2158

    Direction of arrival (DOA) estimation as a fundamental issue in array signal processing has been extensively studied for many applications in military and civilian fields. Many DOA estimation algorithms have been developed for different application scenarios such as low signal-to-noise ratio (SNR), limited snapshots, etc. However, there are still some practical problems that make DOA estimation very difficult. One of them is the correlation between sources. In this paper, we develop a sparsity-based method to estimate the DOA of coherent signals with sparse linear array (SLA). We adopt the off-grid signal model and solve the DOA estimation problem in the sparse Bayesian learning (SBL) framework. By considering the SLA as a ‘missing sensor’ ULA, our proposed method treats the output of the SLA as a partial output of the corresponding virtual uniform linear array (ULA) to make full use of the expanded aperture character of the SLA. Then we employ the expectation-maximization (EM) method to update the hyper-parameters and the output of the virtual ULA in an iterative manner. Numerical results demonstrate that the proposed method has a better performance in correlated signal scenarios than the reference methods in comparison, confirming the advantage of exploiting the extended aperture feature of the SLA.

  • A Highly Efficient Wideband Two-Dimensional Direction Estimation Method with L-Shaped Microphone Array

    Bandhit SUKSIRI  Masahiro FUKUMOTO  

     
    PAPER-Digital Signal Processing

      Vol:
    E102-A No:11
      Page(s):
    1457-1472

    This paper presents an efficient wideband two-dimensional direction-of-arrival (DOA) estimation for an L-shaped microphone array. We propose a way to construct a wideband sample cross-correlation matrix without any process of DOA preliminary estimation, such as beamforming technique, by exploiting sample cross-correlation matrices of two different frequencies for all frequency bins. Subsequently, wideband DOAs can be estimated by using this wideband matrix along with a scheme of estimating DOA in a narrowband subspace method. Therefore, a contribution of our study is providing an alternative framework for recent narrowband subspace methods to estimating the DOA of wideband sources directly. It means that this framework enables cutting-edge techniques in the existing narrowband subspace methods to implement the wideband direction estimation for reducing the computational complexity and facilitating the estimation algorithm. Theoretical analysis and effectiveness of the proposed method are substantiated through numerical simulations and experiments, which are performed in reverberating environments. The results show that performance of the proposed method performs better than others over a range of signal-to-noise ratio with just a few microphones. All these advantages make the proposed method a powerful tool for navigation systems based on acoustic signal processing.

  • Progressive Forwarding Disaster Backup among Cloud Datacenters

    Xiaole LI  Hua WANG  Shanwen YI  Linbo ZHAI  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2019/08/19
      Vol:
    E102-D No:11
      Page(s):
    2135-2147

    The periodic disaster backup activity among geographically distributed multiple datacenters consumes huge network resources and therefore imposes a heavy burden on datacenters and transmission links. Previous work aims at least completion time, maximum utility or minimal cost, without consideration of load balance for limited network resources, likely to result in unfair distribution of backup load or significant impact on daily network services. In this paper, we propose a new progressive forwarding disaster backup strategy in the Software Defined Network scenarios to mitigate forwarding burdens on source datacenters and balance backup loads on backup datacenters and transmission links. We construct a new redundancy-aware time-expanded network model to divide time slots according to redundancy requirement, and propose role-switching method over time to utilize forwarding capability of backup datacenters. In every time slot, we leverage two-step optimization algorithm to realize capacity-constrained backup datacenter selection and fair backup load distribution. Simulations results prove that our strategy achieves good performance in load balance under the condition of guaranteeing transmission completion and backup redundancy.

  • Fast and Robust Disparity Estimation from Noisy Light Fields Using 1-D Slanted Filters

    Gou HOUBEN  Shu FUJITA  Keita TAKAHASHI  Toshiaki FUJII  

     
    PAPER

      Pubricized:
    2019/07/03
      Vol:
    E102-D No:11
      Page(s):
    2101-2109

    Depth (disparity) estimation from a light field (a set of dense multi-view images) is currently attracting much research interest. This paper focuses on how to handle a noisy light field for disparity estimation, because if left as it is, the noise deteriorates the accuracy of estimated disparity maps. Several researchers have worked on this problem, e.g., by introducing disparity cues that are robust to noise. However, it is not easy to break the trade-off between the accuracy and computational speed. To tackle this trade-off, we have integrated a fast denoising scheme in a fast disparity estimation framework that works in the epipolar plane image (EPI) domain. Specifically, we found that a simple 1-D slanted filter is very effective for reducing noise while preserving the underlying structure in an EPI. Moreover, this simple filtering does not require elaborate parameter configurations in accordance with the target noise level. Experimental results including real-world inputs show that our method can achieve good accuracy with much less computational time compared to some state-of-the-art methods.

  • Fast Datapath Processing Based on Hop-by-Hop Packet Aggregation for Service Function Chaining Open Access

    Yuki TAGUCHI  Ryota KAWASHIMA  Hiroki NAKAYAMA  Tsunemasa HAYASHI  Hiroshi MATSUO  

     
    PAPER-Information Network

      Pubricized:
    2019/08/22
      Vol:
    E102-D No:11
      Page(s):
    2184-2194

    Many studies have revealed that the performance of software-based Virtual Network Functions (VNFs) is insufficient for mission-critical networks. Scaling-out approaches, such as auto-scaling of VNFs, could handle a huge amount of traffic; however, the exponential traffic growth confronts us the limitations of both expandability of physical resources and complexity of their management. In this paper, we propose a fast datapath processing method called Packet Aggregation Flow (PA-Flow) that is based on hop-by-hop packet aggregation for more efficient Service Function Chaining (SFC). PA-Flow extends a notion of existing intra-node packet aggregation toward network-wide packet aggregation, and we introduce following three novel features. First, packet I/O overheads at intermediate network devices including NFV-nodes are mitigated by reduction of packet amount. Second, aggregated packets are further aggregated as going through the service chain in a hop-by-hop manner. Finally, next-hop aware packet aggregation is realized using OpenFlow-based flow tables. PA-Flow is designed to be available with various VNF forms (e.g. VM/container/baremetal-based) and virtual I/O technologies (e.g. vhost-user/SR-IOV), and its implementation does not bring noticeable delay for aggregation. We conducted two evaluations: (i) a baseline evaluation for understanding fundamental performance characteristics of PA-Flow (ii) a simulation-based SFC evaluation for proving PA-Flow's effect in a realistic environment. The results showed that throughput of short packet forwarding was improved by 4 times. Moreover, the total number of packets was reduced by 93% in a large-scale SFC.

  • Artificial Neural Network-Based QoT Estimation for Lightpath Provisioning in Optical Networks

    Min ZHANG  Bo XU  Xiaoyun LI  Dong FU  Jian LIU  Baojian WU  Kun QIU  

     
    PAPER-Network

      Pubricized:
    2019/05/16
      Vol:
    E102-B No:11
      Page(s):
    2104-2112

    The capacity of optical transport networks has been increasing steadily and the networks are becoming more dynamic, complex, and transparent. Though it is common to use worst case assumptions for estimating the quality of transmission (QoT) in the physical layer, over provisioning results in high margin requirements. Accurate estimation on the QoT for to-be-established lightpaths is crucial for reducing provisioning margins. Machine learning (ML) is regarded as one of the most powerful methodological approaches to perform network data analysis and enable automated network self-configuration. In this paper, an artificial neural network (ANN) framework, a branch of ML, to estimate the optical signal-to-noise ratio (OSNR) of to-be-established lightpaths is proposed. It takes account of both nonlinear interference between spectrum neighboring channels and optical monitoring uncertainties. The link information vector of the lightpath is used as input and the OSNR of the lightpath is the target for output of the ANN. The nonlinear interference impact of the number of neighboring channels on the estimation accuracy is considered. Extensive simulation results show that the proposed OSNR estimation scheme can work with any RWA algorithm. High estimation accuracy of over 98% with estimation errors of less than 0.5dB can be achieved given enough training data. ANN model with R=4 neighboring channels should be used to achieve more accurate OSNR estimates. Based on the results, it is expected that the proposed ANN-based OSNR estimation for new lightpath provisioning can be a promising tool for margin reduction and low-cost operation of future optical transport networks.

  • Weighted Minimization of Roundoff Noise and Pole Sensitivity Subject to l2-Scaling Constraints for State-Space Digital Filters

    Yoichi HINAMOTO  Akimitsu DOI  

     
    PAPER-Digital Signal Processing

      Vol:
    E102-A No:11
      Page(s):
    1473-1480

    This paper deals with the problem of minimizing roundoff noise and pole sensitivity simultaneously subject to l2-scaling constraints for state-space digital filters. A novel measure for evaluating roundoff noise and pole sensitivity is proposed, and an efficient technique for minimizing this measure by jointly optimizing state-space realization and error feedback is explored, namely, the constrained optimization problem at hand is converted into an unconstrained problem and then the resultant problem is solved by employing a quasi-Newton algorithm. A numerical example is presented to demonstrate the validity and effectiveness of the proposed technique.

  • NP-Completeness of Fill-a-Pix and ΣP2-Completeness of Its Fewest Clues Problem

    Yuta HIGUCHI  Kei KIMURA  

     
    PAPER-Algorithms and Data Structures

      Vol:
    E102-A No:11
      Page(s):
    1490-1496

    Fill-a-Pix is a pencil-and-paper puzzle, which is popular worldwide since announced by Conceptis in 2003. It provides a rectangular grid of squares that must be filled in to create a picture. Precisely, we are given a rectangular grid of squares some of which has an integer from 0 to 9 in it, and our task is to paint some squares black so that every square with an integer has the same number of painted squares around it including the square itself. Despite its popularity, computational complexity of Fill-a-Pix has not been known. We in this paper show that the puzzle is NP-complete, ASP-complete, and #P-complete via a parsimonious reduction from the Boolean satisfiability problem. We also consider the fewest clues problem of Fill-a-Pix, where the fewest clues problem is recently introduced by Demaine et al. for analyzing computational complexity of designing “good” puzzles. We show that the fewest clues problem of Fill-a-Pix is Σ2P-complete.

  • Enhanced Selected Mapping for Impulsive Noise Blanking in Multi-Carrier Power-Line Communication Systems Open Access

    Tomoya KAGEYAMA  Osamu MUTA  Haris GACANIN  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2019/05/16
      Vol:
    E102-B No:11
      Page(s):
    2174-2182

    In this paper, we propose an enhanced selected mapping (e-SLM) technique to improve the performance of OFDM-PLC systems under impulsive noise. At the transmitter, the best transmit sequence is selected from among possible candidates so as to minimize the weighted sum of transmit signal peak power and the estimated receive one, where the received signal peak power is estimated at the transmitter using channel state information (CSI). At the receiver, a nonlinear blanking is applied to hold the impulsive noise under a given threshold, where impulsive noise detection accuracy is improved by the proposed e-SLM. We evaluate the probability of false alarms raised by impulsive noise detection and bit error rate (BER) of OFDM-PLC system using the proposed e-SLM. The results show the effectiveness of the proposed method in OFDM-PLC system compared with the conventional blanking technique.

  • Large Size In-Cell Capacitive Touch Panel and Force Touch Development for Automotive Displays Open Access

    Naoki TAKADA  Chihiro TANAKA  Toshihiko TANAKA  Yuto KAKINOKI  Takayuki NAKANISHI  Naoshi GOTO  

     
    INVITED PAPER

      Vol:
    E102-C No:11
      Page(s):
    795-801

    We have developed the world's largest 16.7-inch hybrid in-cell touch panel. To realize the large sized in-cell touch panel, we applied a vertical Vcom system and low resistance sensor, which are JDI's original technologies. For glove touch function, we applied mutual bundled driving, which increases the signal intensity higher. The panel also has a low surface reflection, curved-shaped, and non-rectangular characteristics, which are particular requirements in the automotive market. The over 15-inch hybrid in-cell touch panel adheres to automotive quality requirements. We have also developed a force touch panel, which is a new human machine interface (HMI) based on a hybrid in-cell touch panel in automotive display. This study reports on the effect of the improvements on the in-plane variation of force touch and the value change of the force signal under different environment conditions. We also a introduce force touch implemented prototype.

  • A Trend-Shift Model for Global Factor Analysis of Investment Products

    Makoto KIRIHATA  Qiang MA  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2019/08/13
      Vol:
    E102-D No:11
      Page(s):
    2205-2213

    Recently, more and more people start investing. Understanding the factors affecting financial products is important for making investment decisions. However, it is difficult to understand factors for novices because various factors affect each other. Various technique has been studied, but conventional factor analysis methods focus on revealing the impact of factors over a certain period locally, and it is not easy to predict net asset values. As a reasonable solution for the prediction of net asset values, in this paper, we propose a trend shift model for the global analysis of factors by introducing trend change points as shift interference variables into state space models. In addition, to realize the trend shift model efficiently, we propose an effective trend detection method, TP-TBSM (two-phase TBSM), by extending TBSM (trend-based segmentation method). Comparing with TBSM, TP-TBSM could detect trends flexibly by reducing the dependence on parameters. We conduct experiments with eleven investment trust products and reveal the usefulness and effectiveness of the proposed model and method.

661-680hit(8249hit)