The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] PA(8249hit)

681-700hit(8249hit)

  • A General Perfect Cyclic Interference Alignment by Propagation Delay for Arbitrary X Channels with Two Receivers Open Access

    Conggai LI  Feng LIU  Shuchao JIANG  Yanli XU  

     
    LETTER-Digital Signal Processing

      Vol:
    E102-A No:11
      Page(s):
    1580-1585

    Interference alignment (IA) in temporal domain is important in the case of single-antenna vehicle communications. In this paper, perfect cyclic IA based on propagation delay is extended to the K×2 X channels with two receivers and arbitrary transmitters K≥2, which achieves the maximal multiplexing gain by obtaining the theoretical degree of freedom of 2K/(K+1). We deduce the alignment and separability conditions, and propose a general scheme which is flexible in setting the index of time-slot for IA at the receiver side. Furthermore, the feasibility of the proposed scheme in the two-/three- Euclidean space is analyzed and demonstrated.

  • Structural Compressed Network Coding for Data Collection in Cluster-Based Wireless Sensor Networks

    Yimin ZHAO  Song XIAO  Hongping GAN  Lizhao LI  Lina XIAO  

     
    PAPER-Network

      Pubricized:
    2019/05/21
      Vol:
    E102-B No:11
      Page(s):
    2126-2138

    To efficiently collect sensor readings in cluster-based wireless sensor networks, we propose a structural compressed network coding (SCNC) scheme that jointly considers structural compressed sensing (SCS) and network coding (NC). The proposed scheme exploits the structural compressibility of sensor readings for data compression and reconstruction. Random linear network coding (RLNC) is used to re-project the measurements and thus enhance network reliability. Furthermore, we calculate the energy consumption of intra- and inter-cluster transmission and analyze the effect of the cluster size on the total transmission energy consumption. To that end, we introduce an iterative reweighed sparsity recovery algorithm to address the all-or-nothing effect of RLNC and decrease the recovery error. Experiments show that the SCNC scheme can decrease the number of measurements required for decoding and improve the network's robustness, particularly when the loss rate is high. Moreover, the proposed recovery algorithm has better reconstruction performance than several other state-of-the-art recovery algorithms.

  • Accelerating Stochastic Simulations on GPUs Using OpenCL

    Pilsung KANG  

     
    LETTER-Fundamentals of Information Systems

      Pubricized:
    2019/07/23
      Vol:
    E102-D No:11
      Page(s):
    2253-2256

    Since first introduced in 2008 with the 1.0 specification, OpenCL has steadily evolved over the decade to increase its support for heterogeneous parallel systems. In this paper, we accelerate stochastic simulation of biochemical reaction networks on modern GPUs (graphics processing units) by means of the OpenCL programming language. In implementing the OpenCL version of the stochastic simulation algorithm, we carefully apply its data-parallel execution model to optimize the performance provided by the underlying hardware parallelism of the modern GPUs. To evaluate our OpenCL implementation of the stochastic simulation algorithm, we perform a comparative analysis in terms of the performance using the CPU-based cluster implementation and the NVidia CUDA implementation. In addition to the initial report on the performance of OpenCL on GPUs, we also discuss applicability and programmability of OpenCL in the context of GPU-based scientific computing.

  • Further Results on the Separating Redundancy of Binary Linear Codes

    Haiyang LIU  Lianrong MA  

     
    LETTER-Coding Theory

      Vol:
    E102-A No:10
      Page(s):
    1420-1425

    In this letter, we investigate the separating redundancy of binary linear codes. Using analytical techniques, we provide a general lower bound on the first separating redundancy of binary linear codes and show the bound is tight for a particular family of binary linear codes, i.e., cycle codes. In other words, the first separating redundancy of cycle codes can be determined. We also derive a deterministic and constructive upper bound on the second separating redundancy of cycle codes, which is shown to be better than the general deterministic and constructive upper bounds for the codes.

  • An Efficient Parallel Triangle Enumeration on the MapReduce Framework

    Hongyeon KIM  Jun-Ki MIN  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2019/07/11
      Vol:
    E102-D No:10
      Page(s):
    1902-1915

    A triangle enumerating problem is one of fundamental problems of graph data. Although several triangle enumerating algorithms based on MapReduce have been proposed, they still suffer from generating a lot of intermediate data. In this paper, we propose the efficient MapReduce algorithms to enumerate every triangle in the massive graph based on a vertex partition. Since a triangle is composed of an edge and a wedge, our algorithms check the existence of an edge connecting the end-nodes of each wedge. To generate every triangle from a graph in parallel, we first split a graph into several vertex partitions and group the edges and wedges in the graph for each pair of vertex partitions. Then, we form the triangles appearing in each group. Furthermore, to enhance the performance of our algorithm, we remove the duplicated wedges existing in several groups. Our experimental evaluation shows the performance of our proposed algorithm is better than that of the state-of-the-art algorithm in diverse environments.

  • New Asymptotically Optimal Optical Orthogonal Signature Pattern Codes from Cyclic Codes

    Lin-Zhi SHEN  

     
    LETTER-Coding Theory

      Vol:
    E102-A No:10
      Page(s):
    1416-1419

    Optical orthogonal signature pattern codes (OOSPCs) have attracted great attention due to their important application in the spatial code-division multiple-access network for image transmission. In this paper, we give a construction for OOSPCs based on cyclic codes over Fp. Applying this construction with the Reed-Solomon codes and the generalized Berlekamp-Justesen codes, we obtain two classes of asymptotically optimal OOSPCs.

  • Analysis of Relevant Quality Metrics and Physical Parameters in Softness Perception and Assessment System

    Zhiyu SHAO  Juan WU  Qiangqiang OUYANG  

     
    PAPER-Rehabilitation Engineering and Assistive Technology

      Pubricized:
    2019/06/11
      Vol:
    E102-D No:10
      Page(s):
    2013-2024

    Many quality metrics have been proposed for the compliance perception to assess haptic device performance and perceived results. Perceived compliance may be influenced by factors such as object properties, experimental conditions and human perceptual habits. In this paper, analysis of softness perception was conducted to find out relevant quality metrics dominating in the compliance perception system and their correlation with perception results, by expressing these metrics by basic physical parameters that characterizing these factors. Based on three psychophysical experiments, just noticeable differences (JNDs) for perceived softness of combination of different stiffness coefficients and damping levels rendered by haptic devices were analyzed. Interaction data during the interaction process were recorded and analyzed. Preliminary experimental results show that the discrimination ability of softness perception changes with the ratio of damping to stiffness when subjects exploring at their habitual speed. Analysis results indicate that quality metrics of Rate-hardness, Extended Rate-hardness and ratio of damping to stiffness have high correlation for perceived results. Further analysis results show that parameters that reflecting object properties (stiffness, damping), experimental conditions (force bandwidth) and human perceptual habits (initial speed, maximum force change rate) lead to the change of these quality metrics, which then bring different perceptual feeling and finally result in the change of discrimination ability. Findings in this paper may provide a better understanding of softness perception and useful guidance in improvement of haptic and teleoperation devices.

  • Block Level TLB Coalescing for Buddy Memory Allocator Open Access

    Jae Young HUR  

     
    LETTER-Computer System

      Pubricized:
    2019/07/17
      Vol:
    E102-D No:10
      Page(s):
    2043-2046

    Conventional TLB (Translation Lookaside Buffer) coalescing schemes do not fully exploit the contiguity that a memory allocator provides. The conventional schemes accordingly have certain performance overheads due to page table walks. To address this issue, we propose an efficient scheme, called block contiguity translation (BCT), that accommodates the block size information in a page table considering the Buddy algorithm. By fully exploiting the block-level contiguity, we can reduce the page table walks as certain physical memory is allocated in the contiguous way. Additionally, we present unified per-level page sizes to simplify the design and better utilize the contiguity information. Considering the state-of-the-art schemes as references, the comparative analysis and the performance simulations are conducted. Experiments indicate that the proposed scheme can improve the memory system performance with moderate hardware overheads.

  • Basic Study of Both-Sides Retrodirective System for Minimizing the Leak Energy in Microwave Power Transmission Open Access

    Takayuki MATSUMURO  Yohei ISHIKAWA  Naoki SHINOHARA  

     
    PAPER

      Vol:
    E102-C No:10
      Page(s):
    659-665

    In the beam-type microwave power transmission system, it is required to minimize the interference with communication and the influence on the human body. Retrodirective system that re-radiates a beam in the direction of arrival of a signal is well known as a beam control technique for accurate microwave power transmission. In this paper, we newly propose to apply the retrodirective system to both transmitting and receiving antennas. The leakage to the outside of the system is expected to minimize self-convergently while following the atmospheric fluctuation and the antenna movement by repeating the retrodirective between the transmitting and receiving antenna in this system. We considered this phenomenon theoretically using an infinite array antenna model. Finally, it has been shown by the equivalent circuit simulation that stable transmission can be realized by oscillating the system.

  • Hardware-Based Principal Component Analysis for Hybrid Neural Network Trained by Particle Swarm Optimization on a Chip

    Tuan Linh DANG  Yukinobu HOSHINO  

     
    PAPER-Neural Networks and Bioengineering

      Vol:
    E102-A No:10
      Page(s):
    1374-1382

    This paper presents a hybrid architecture for a neural network (NN) trained by a particle swarm optimization (PSO) algorithm. The NN is implemented on the hardware side while the PSO is executed by a processor on the software side. In addition, principal component analysis (PCA) is also applied to reduce correlated information. The PCA module is implemented in hardware by the SystemVerilog programming language to increase operating speed. Experimental results showed that the proposed architecture had been successfully implemented. In addition, the hardware-based NN trained by PSO (NN-PSO) program was faster than the software-based NN trained by the PSO program. The proposed NN-PSO with PCA also obtained better recognition rates than the NN-PSO without-PCA.

  • LGCN: Learnable Gabor Convolution Network for Human Gender Recognition in the Wild Open Access

    Peng CHEN  Weijun LI  Linjun SUN  Xin NING  Lina YU  Liping ZHANG  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2019/06/13
      Vol:
    E102-D No:10
      Page(s):
    2067-2071

    Human gender recognition in the wild is a challenging task due to complex face variations, such as poses, lighting, occlusions, etc. In this letter, learnable Gabor convolutional network (LGCN), a new neural network computing framework for gender recognition was proposed. In LGCN, a learnable Gabor filter (LGF) is introduced and combined with the convolutional neural network (CNN). Specifically, the proposed framework is constructed by replacing some first layer convolutional kernels of a standard CNN with LGFs. Here, LGFs learn intrinsic parameters by using standard back propagation method, so that the values of those parameters are no longer fixed by experience as traditional methods, but can be modified by self-learning automatically. In addition, the performance of LGCN in gender recognition is further improved by applying a proposed feature combination strategy. The experimental results demonstrate that, compared to the standard CNNs with identical network architecture, our approach achieves better performance on three challenging public datasets without introducing any sacrifice in parameter size.

  • 120-W Ku-Band GaN SSPA with Diode Linearizer for Future Broadcasting Satellites Open Access

    Masafumi NAGASAKA  Masaaki KOJIMA  Takuma TORII  Hiromitsu UTSUMI  Koji YAMANAKA  Shintaro SHINJO  Mitsuhiro SHIMOZAWA  Hisashi SUJIKAI  

     
    PAPER

      Vol:
    E102-C No:10
      Page(s):
    717-724

    Satellite broadcasting of 4K/8K ultra-high definition television (UHDTV) was launched in Japan in December 2018. Because this system uses the amplitude and phase shift keying (APSK) modulation scheme, there is a need to improve the non-linear characteristics of the satellite transponders. To meet this requirement, we have been developing a 120-W-class Ku-band solid state power amplifier (SSPA) as a replacement for the currently used traveling wave tube amplifier (TWTA). In this study, we developed a gallium-nitride (GaN) SSPA and linearizer (LNZ). The SSPA achieved an output power of 120W while maintaining a power added efficiency (PAE) of 31%. We evaluated the transmission performance of 16APSK in this SSPA channel in comparison with that in the TWTA channel.

  • Device-Free Targets Tracking with Sparse Sampling: A Kronecker Compressive Sensing Approach

    Sixing YANG  Yan GUO  Dongping YU  Peng QIAN  

     
    PAPER

      Pubricized:
    2019/04/26
      Vol:
    E102-B No:10
      Page(s):
    1951-1959

    We research device-free (DF) multi-target tracking scheme in this paper. The existing localization and tracking algorithms are always pay attention to the single target and need to collect a large amount of localization information. In this paper, we exploit the sparse property of multiple target locations to achieve target trace accurately with much less sampling both in the wireless links and the time slots. The proposed approach mainly includes the target localization part and target trace recovery part. In target localization part, by exploiting the inherent sparsity of the target number, Compressive Sensing (CS) is utilized to reduce the wireless links distributed. In the target trace recovery part, we exploit the compressive property of target trace, as well as designing the measurement matrix and the sparse matrix, to reduce the samplings in time domain. Additionally, Kronecker Compressive Sensing (KCS) theory is used to simultaneously recover the multiple traces both of the X label and the Y Label. Finally, simulations show that the proposed approach holds an effective recovery performance.

  • Underdetermined Direction of Arrival Estimation Based on Signal Sparsity

    Peng LI  Zhongyuan ZHOU  Mingjie SHENG  Peng HU  Qi ZHOU  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2019/04/12
      Vol:
    E102-B No:10
      Page(s):
    2066-2072

    An underdetermined direction of arrival estimation method based on signal sparsity is proposed when independent and coherent signals coexist. Firstly, the estimate of the mixing matrix of the impinging signals is obtained by clustering the single source points which are detected by the ratio of time-frequency transforms of the received signals. Then, each column vector of the mixing matrix is processed by exploiting the forward and backward vectors in turn to obtain the directions of arrival of all signals. The number of independent signals and coherent signal groups that can be estimated by the proposed method can be greater than the number of sensors. The validity of the method is demonstrated by simulations.

  • Scalable Community Identification with Manifold Learning on Speaker I-Vector Space

    Hongcui WANG  Shanshan LIU  Di JIN  Lantian LI  Jianwu DANG  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2019/07/10
      Vol:
    E102-D No:10
      Page(s):
    2004-2012

    Recognizing the different segments of speech belonging to the same speaker is an important speech analysis task in various applications. Recent works have shown that there was an underlying manifold on which speaker utterances live in the model-parameter space. However, most speaker clustering methods work on the Euclidean space, and hence often fail to discover the intrinsic geometrical structure of the data space and fail to use such kind of features. For this problem, we consider to convert the speaker i-vector representation of utterances in the Euclidean space into a network structure constructed based on the local (k) nearest neighbor relationship of these signals. We then propose an efficient community detection model on the speaker content network for clustering signals. The new model is based on the probabilistic community memberships, and is further refined with the idea that: if two connected nodes have a high similarity, their community membership distributions in the model should be made close. This refinement enhances the local invariance assumption, and thus better respects the structure of the underlying manifold than the existing community detection methods. Some experiments are conducted on graphs built from two Chinese speech databases and a NIST 2008 Speaker Recognition Evaluations (SREs). The results provided the insight into the structure of the speakers present in the data and also confirmed the effectiveness of the proposed new method. Our new method yields better performance compared to with the other state-of-the-art clustering algorithms. Metrics for constructing speaker content graph is also discussed.

  • A Diversity Metric Based Study on the Correlation between Diversity and Security

    Qing TONG  Yunfei GUO  Hongchao HU  Wenyan LIU  Guozhen CHENG  Ling-shu LI  

     
    PAPER-Dependable Computing

      Pubricized:
    2019/07/16
      Vol:
    E102-D No:10
      Page(s):
    1993-2003

    Software diversity can be utilized in cyberspace security to defend against the zero-day attacks. Existing researches have proved the effectiveness of diversity in bringing security benefits, but few of them touch the problem that whether there is a positive correlation between the security and the diversity. In addition, there is little guidance on how to construct an effective diversified system. For that, this paper develops two diversity metrics based on system attribute matrix, proposes a diversity measurement and verifies the effectiveness of the measurement. Through several simulations on the diversified systems which use voting strategy, the relationship between diversity and security is analyzed. The results show that there is an overall positive correlation between security and diversity. Though some cases are against the correlation, further analysis is made to explain the phenomenon. In addition, the effect of voting strategy is also discussed through simulations. The results show that the voting strategy have a dominant impact on the security, which implies that security benefits can be obtained only with proper strategies. According to the conclusions, some guidance is provided in constructing a more diversified as well as securer system.

  • Polarization Filtering Based Transmission Scheme for Wireless Communications

    Zhangkai LUO  Zhongmin PEI  Bo ZOU  

     
    LETTER-Digital Signal Processing

      Vol:
    E102-A No:10
      Page(s):
    1387-1392

    In this letter, a polarization filtering based transmission (PFBT) scheme is proposed to enhance the spectrum efficiency in wireless communications. In such scheme, the information is divided into several parts and each is conveyed by a polarized signal with a unique polarization state (PS). Then, the polarized signals are added up and transmitted by the dual-polarized antenna. At the receiver side, the oblique projection polarization filters (OPPFs) are adopted to separate each polarized signal. Thus, they can be demodulated separately. We mainly focus on the construction methods of the OPPF matrix when the number of the separate parts is 2 and 3 and evaluate the performance in terms of the capacity and the bit error rate. In addition, we also discuss the probability of the signal separation when the number of the separate parts is equal or greater than 4. Theoretical results and simulation results demonstrate the performance of the proposed scheme.

  • Adaptive Multi-Scale Tracking Target Algorithm through Drone

    Qiusheng HE  Xiuyan SHAO  Wei CHEN  Xiaoyun LI  Xiao YANG  Tongfeng SUN  

     
    PAPER

      Pubricized:
    2019/04/26
      Vol:
    E102-B No:10
      Page(s):
    1998-2005

    In order to solve the influence of scale change on target tracking using the drone, a multi-scale target tracking algorithm is proposed which based on the color feature tracking algorithm. The algorithm realized adaptive scale tracking by training position and scale correlation filters. It can first obtain the target center position of next frame by computing the maximum of the response, where the position correlation filter is learned by the least squares classifier and the dimensionality reduction for color features is analyzed by principal component analysis. The scale correlation filter is obtained by color characteristics at 33 rectangular areas which is set by the scale factor around the central location and is reduced dimensions by orthogonal triangle decomposition. Finally, the location and size of the target are updated by the maximum of the response. By testing 13 challenging video sequences taken by the drone, the results show that the algorithm has adaptability to the changes in the target scale and its robustness along with many other performance indicators are both better than the most state-of-the-art methods in illumination Variation, fast motion, motion blur and other complex situations.

  • A Fast Iterative Check Polytope Projection Algorithm for ADMM Decoding of LDPC Codes by Bisection Method Open Access

    Yan LIN  Qiaoqiao XIA  Wenwu HE  Qinglin ZHANG  

     
    LETTER-Information Theory

      Vol:
    E102-A No:10
      Page(s):
    1406-1410

    Using linear programming (LP) decoding based on alternating direction method of multipliers (ADMM) for low-density parity-check (LDPC) codes shows lower complexity than the original LP decoding. However, the development of the ADMM-LP decoding algorithm could still be limited by the computational complexity of Euclidean projections onto parity check polytope. In this paper, we proposed a bisection method iterative algorithm (BMIA) for projection onto parity check polytope avoiding sorting operation and the complexity is linear. In addition, the convergence of the proposed algorithm is more than three times as fast as the existing algorithm, which can even be 10 times in the case of high input dimension.

  • A Hybrid CRBP-VMP Cooperative Positioning Algorithm for Distributed Multi-UAVs

    Lu LU  Guangxia LI  Tianwei LIU  Siming LI  Shiwei TIAN  

     
    PAPER

      Pubricized:
    2019/04/26
      Vol:
    E102-B No:10
      Page(s):
    1933-1940

    Positioning information plays a significant role in multi-unmanned aerial vehicles (UAVs) applications. Traditionally, the positioning information is widely provided by Global Navigation Satellite System (GNSS) due to its good performance and global coverage. However, owing to complicated flight environment or signal blockage, jamming and unintentional interference, the UAVs may fail to locate themselves by using GNSS alone. As a new method to resolve these problems, cooperative positioning, by incorporating peer-to-peer range measurements and assisted information, has attracted more and more attentions due to its ability to enhance the accuracy and availability of positioning. However, achieving good performance of cooperative positioning of multi-UAVs is challenging as their mobility, arbitrary nonlinear state-evolution, measurement models and limited computation and communication resources. In this paper, we present a factor graph (FG) representation and message passing methodology to solve cooperative positioning problem among UAVs in 3-dimensional environment where GNSS cannot provide services. Moreover, to deal with the nonlinear state-evolution and measurement models while decreasing the computation complexity and communication cost, we develop a distributed algorithm for dynamic and hybrid UAVs by means of Spherical-Radial Cubature Rules (CR) method with belief propagation (BP) and variational message passing (VMP) methods (CRBP-VMP) on the FG. The proposed CRBP deals with the highly non-linear state-evolution models and non-Gaussian distributions, the VMP method is employed for ranging message, gets the simpler message representation and can reduce communication cost in the joint estimation problem. Simulation results demonstrate that the higher positioning accuracy, the better convergence as well as low computational complexity and communication cost of the proposed CRBP-VMP algorithm, which can be achieved compared with sum-product algorithm over a wireless network (SPAWN) and traditional Cubature Kalman Filters (CKF) method.

681-700hit(8249hit)