The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] PLA(1376hit)

741-760hit(1376hit)

  • On the Bragg Scattering Observed in L-Band Synthetic Aperture Radar Images of Flooded Rice Fields

    Kazuo OUCHI  Haipeng WANG  Naoki ISHITSUKA  Genya SAITO  Kentaro MOHRI  

     
    PAPER-Sensing

      Vol:
    E89-B No:8
      Page(s):
    2218-2225

    This article presents the analysis of the Bragg scattering phenomenon which has been observed in the images of machine-planted rice paddies acquired by the JERS-1 L-band synthetic aperture radar (SAR). The simultaneous measurements of rice plants were made at the SAR data acquisition times. Large differences of 20-25 dB in image intensity between the transplanting and ripening stages are found to be dependent on the planting direction and bunch separation. This selective image enhancement is a result of the Bragg resonance backscatter due to the double-bounce of incident L-band microwave between the flooded water surface and periodically planted bunches of rice plants. Support for the idea of double-bounce scattering is provided by the decomposition analysis of L-band and X-band polarimetric Pi-SAR data; and a simple numerical simulation based on the physical optics model shows fairly good agreement with the JERS-1 SAR data. The results presented in this paper is mainly of academic interest, but a suggestion can be made on the selection of suitable microwave band for monitoring rice fields.

  • Influence of NH3-Plasma Pretreatment before Si3N4 Passivation Film Deposition on Current Collapse in AlGaN/GaN-HEMTs

    Shinichi HOSHI  Toshiharu MARUI  Masanori ITOH  Yoshiaki SANO  Shouhei SEKI  

     
    PAPER-GaN-Based Devices

      Vol:
    E89-C No:7
      Page(s):
    1052-1056

    In AlGaN/GaN high electron mobility transistors (HEMTs), Si3N4 passivation film brings effective improvements in the current collapse phenomenon, however, the suppression of this phenomenon in a high voltage operation can not be achieved in only the Si3N4 deposition process. In order to solve this problem, we have demonstrated an NH3-plasma surface pretreatment in the chamber of plasma enhanced chemical vapor deposition (PE-CVD) just before Si3N4 deposition process. We found that the optimized NH3-plasma pretreatment could improve the current collapse as compared with only the Si3N4 deposition and an excessive pretreatment made it worse adversely in AlGaN/GaN-HEMTs. It was confirmed by Auger electron spectroscopy (AES) analysis that the optimized NH3-plasma pretreatment decreased the carbon contamination such as hydrocarbon on the AlGaN surface and the excessive pretreatment degraded the stoicheiometric composition of AlGaN surface.

  • A Tool Platform Using an XML Representation of Source Code Information

    Katsuhisa MARUYAMA  Shinichiro YAMAMOTO  

     
    PAPER-Software Engineering

      Vol:
    E89-D No:7
      Page(s):
    2214-2222

    Recent IDEs have become more extensible tool platforms but do not concern themselves with how other tools running on them collaborate with each other. They compel developers to use proprietary representations or the classical abstract syntax tree (AST) to build source code tools. Although these representations contain sufficient information, they are neither portable nor extensible. This paper proposes a tool platform that manages commonly used, fined-grained, information about Java source code by using an XML representation. Our representation is suitable for developing tools which browse and manipulate actual source code, since the original code is annotated with tags based on its structure and retained within the tags. Additionally, it exposes information resulting from global semantic analysis, which is never provided by the typical AST. Our proposed platform allows the developers to extend the representation for the purpose of sharing or exchanging various kinds of information about the source code, and also enables them to build new tools by using existing XML utilities.

  • A Visual Inspection System Based on Trinarized Broad-Edge and Gray-Scale Hybrid Matching

    Haruhisa OKUDA  Manabu HASHIMOTO  Miwako HIROOKA  Kazuhiko SUMI  

     
    PAPER-Image Inspection

      Vol:
    E89-D No:7
      Page(s):
    2068-2075

    In the field of industrial manufacturing, visual pattern inspection is an important task to prevent the inclusion of incorrect parts. There have been demands for such methods able to handle factors caused by positional and rotational alignment, and illumination changes. In this paper, we propose a discrimination method called Trinarized broad-edge and Gray-scale Hybrid Matching (TGHM). The method is highly reliable due to gray-scale cross correlation which has a high pattern discrimination efficiency, with high-speed position and rotation alignment using the characteristics of trinarized broad-edge representation which has high data compressibility and illumination-resistant variability. In an example in which the method is applied to mis-collation inspection equipment of a bookbinding machine, it is confirmed that the processing speed is 24,000 sheets/hour, the error detection rate is 100.0%, and the mis-alarm rate is less than 0.002%, and it is verified that the method is practical.

  • Removal of Adherent Waterdrops from Images Acquired with a Stereo Camera System

    Yuu TANAKA  Atsushi YAMASHITA  Toru KANEKO  Kenjiro T. MIURA  

     
    PAPER-Stereo and Multiple View Analysis

      Vol:
    E89-D No:7
      Page(s):
    2021-2027

    In this paper, we propose a new method that can remove view-disturbing noises from stereo images. One of the thorny problems in outdoor surveillance by a camera is that adherent noises such as waterdrops on the protecting glass surface lens disturb the view from the camera. Therefore, we propose a method for removing adherent noises from stereo images taken with a stereo camera system. Our method is based on the stereo measurement and utilizes disparities between stereo image pair. Positions of noises in images can be detected by comparing disparities measured from stereo images with the distance between the stereo camera system and the glass surface. True disparities of image regions hidden by noises can be estimated from the property that disparities are generally similar with those around noises. Finally, we can remove noises from images by replacing the above regions with textures of corresponding image regions obtained by the disparity referring. Experimental results show the effectiveness of the proposed method.

  • Enhancement-Mode AlGaN/GaN HEMTs with Low On-Resistance and Low Knee-Voltage

    Yong CAI  Yugang ZHOU  Kei May LAU  Kevin J. CHEN  

     
    PAPER-GaN-Based Devices

      Vol:
    E89-C No:7
      Page(s):
    1025-1030

    Based on fluoride-based plasma treatment of the gate region in AlGaN/GaN HEMTs and post-gate rapid thermal annealing (RTA), enhancement mode (E-mode) AlGaN/GaN HEMTs with low on-resistance and low knee-voltage were fabricated. The fabricated E-mode AlGaN/GaN HEMT with 1 µm-long gate exhibits a threshold voltage of 0.9 V, a knee-voltage of 2.2 V, a maximum drain current density of 310 mA/mm, a peak gm of 148 mS/mm, a current gain cutoff frequency fT of 10.1 GHz and a maximum oscillation frequency fmax of 34.3 GHz. In addition, the fluoride-based plasma treatment was also found to be effective in lowering the gate leakage current, in both forward and reverse bias. Two orders of magnitude reducation in gate leakage current was observed in the fabricated E-mode HEMTs compared to the conventional D-mode HEMTs without fluoride-based plasma treatment.

  • Terahertz Frequency Multiplier Operation of Two Dimensional Plasmon Resonant Photomixer

    Takuya NISHIMURA  Mitsuhiro HANABE  Masaki MIYAMOTO  Taiichi OTSUJI  Eiichi SANO  

     
    PAPER-THz Devices

      Vol:
    E89-C No:7
      Page(s):
    1005-1011

    We analytically investigated the feasibility of multiplier operation in the terahertz range for our original plasmon resonant photomixer. The photomixer features two unique structures (doubly interdigitated gate gratings and a vertical cavity) for higher radiation efficiencies. Its total field emission properties are the result of a combination of plasmon excitation dynamics and electromagnetic field dynamics. The plasmon excitation formulated by the hydrodynamic equations exhibits fundamental and harmonic resonances whose intensities monotonically decrease with the number of harmonics due to the dispersive plasma damping factors. The electromagnetic dynamics, on the other hand, formulated by the Maxwell's equations, reflect material- and structure-dependent device parameters; the grating-bi-coupled plasmonic cavity together with the vertical cavity structures produce nonlinear field emission properties. This results in extraordinary field enhancement at distinct frequencies inconsistent with the plasmon resonances. The frequency-dependent FDTD (finite difference time domain method) Maxwell's simulation revealed that the field emission peak frequency shifted upward apart from the fundamental mode of plasmon resonant frequency and approached to its second harmonic frequency with increasing the electron density in the plasmon cavity. Calculated total field emission spectra indicated that highly dense 2D-plasmon conditions enable frequency-doubler operation in the terahertz range.

  • Non Resonant Response to Terahertz Radiation by Submicron CMOS Transistors

    Yahya Moubarak MEZIANI  Jerzy USAKOWSKI  Nina DYAKONOVA  Wojciech KNAP  Dalius SELIUTA  Edmundas SIRMULIS  Jan DEVENSON  Gintaras VALUSIS  Frederic BOEUF  Thomas SKOTNICKI  

     
    PAPER-THz Devices

      Vol:
    E89-C No:7
      Page(s):
    993-998

    Experimental investigations on detection of terahertz radiation are presented. We used plasma wave instability phenomenon in nanometer Silicon field effect transistor. A 30 nm gate length transistor was illuminated by THz radiation at room temperature. We observe a maximum signal near to the threshold voltage. This result clearly demonstrates the possibility of plasma wave THz operation of these nanometer scale devices. The response was attributed to a non resonant detection. We also demonstrate the possibility to observe a resonant detection on the same devices.

  • Terahertz Emission and Detection by Plasma Waves in Nanometer Size Field Effect Transistors

    Wojciech KNAP  Jerzy USAKOWSKI  Frederic TEPPE  Nina DYAKONOVA  Abdelouahad El FATIMY  

     
    INVITED PAPER

      Vol:
    E89-C No:7
      Page(s):
    926-930

    Plasma oscillations in nanometer field effect transistors are used for detection and generation of electromagnetic radiation of THz frequency. Following first observations of resonant detection in 150 nm gate length GaAs HEMT, we describe recent observations of room temperature detection in nanometer Si MOSFETs, resonant detection in GaN/AlGaN HEMTs and improvement of room temperature detection in GaAs HEMTs due to the drain current. Experiments on spectrally resolved THz emission are described that involve room and liquid helium temperature emission from nanometer GaInAs and GaN HEMTs.

  • Structure-Sensitive Design for Wider Tunable Operation of Terahertz Plasmon-Resonant Photomixer

    Mitsuhiro HANABE  Takuya NISHIMURA  Masaki MIYAMOTO  Taiichi OTSUJI  Eiichi SANO  

     
    PAPER-THz Devices

      Vol:
    E89-C No:7
      Page(s):
    985-992

    We performed numerical analyses on structure sensitive field emission properties of our proposing plasmon resonant photomixer (PRX) in the terahertz range. The photomixer incorporates doubly interdigitated grating strips for gate electrodes and a vertical resonator structure for realizing highly efficient terahertz emission even at room temperature. We investigated the dependence of total field emission properties of PRX's on their material and dimension parameters. Introduction of low-conductive gate electrodes and ac-coupled 2D periodic plasmon gratings with depleted connecting portions are effective for expanding its lower cutoff frequency. The cutoff frequency, which is around 1.0 THz in standard metal-gates configuration, is expanded to less than 500 GHz. The output intensity could also be amplified more than double. On the other hand, a shorter vertical cavity is effective for expanding its upper cutoff frequency, which is expanded close to vertical resonant frequency, while maintaining the lower cutoff frequency. The combination of these design rules can realize much broader bandwidth operation.

  • Plasma Instability and Terahertz Generation in HEMTs Due to Electron Transit-Time Effect

    Victor RYZHII  Akira SATOU  Michael S. SHUR  

     
    PAPER-THz Devices

      Vol:
    E89-C No:7
      Page(s):
    1012-1019

    We study the coupled spatio-temporal variations of the electron density and the electric field (electron plasma oscillations) in high-electron mobility transistors using the developed device model. The excitation of electron plasma oscillations in the terahertz range of frequencies might lead to the emission of terahertz radiation. In the framework of the model developed, we calculate the resonant plasma frequencies and find the conditions for the plasma oscillations self-excitation (plasma instability) We show that the transit-time effect in the high-electric field region near the drain edge of the channel of high-electron mobility transistors can cause the self-excitation of the plasma oscillations. It is shown that the self-excitation of plasma oscillations is possible when the ratio of the electron velocity in the high field region, ud, and the gate length, Lg, i.e., the inverse transit time are sufficiently large in comparison with the electron collision frequency in the gated channel, ν. The transit-time mechanism of plasma instability under consideration can superimpose on the Dyakonov-Shur mechanism predicted previously strongly affecting the conditions of the instability and, hence, terahertz emission. The instability mechanism under consideration might shed light on the origin of terahertz emission from high electron mobility transistors observed in recent experiments.

  • A Transcutaneous Recharging System with the Function of Bi-directional Signal Transmission for Fully-Implantable Middle Ear Hearing Devices

    Il-Yong PARK  Hyung-Gyu LIM  Young-Ho YOON  Min-Kyu KIM  Byung-Seop SONG  Jin-Ho CHO  

     
    LETTER

      Vol:
    E89-A No:6
      Page(s):
    1692-1694

    In this paper, for the fully-implantable middle ear hearing devices (F-IMEHD), a transcutaneous recharging system that has the function of the bi-directional signal transmission with the implant module in a body as well as recharging battery has been designed and implemented. The electromagnetic coupling method using two coils has been adopted for the transfer of electrical power to recharge internal battery of the implant module. To increase the efficiency of power transfer, the switching frequency of recharging system is determined by the consideration of the resonance of LC tank circuits. The bidirectional signal transmission between the recharging system and the implant module has been designed through the on-off keying modulation of switching signal in the recharging system and the impedance variation of LC tank circuit in the implant module. Through the demonstration of the implemented system, it has been verified that the proposed system has the performance of bidirectional signal transmission with the implant module of F-IMEHDs as well as the battery recharging.

  • Design of a Signal Processing Module with Various Filters Characteristics for Fully Implantable Middle Ear Hearing Devices

    Young-Ho YOON  Hyung-Gyu LIM  Jyung-Hyun LEE  Hee-Joon PARK  Il-Yong PARK  Min-Kyu KIM  Chul-Ho WON  Byung-Seop SONG  Jin-Ho CHO  

     
    LETTER

      Vol:
    E89-A No:6
      Page(s):
    1695-1698

    In this paper, the voice signal processing module has been designed using the micro processor for the use of fully implantable middle ear devices (F-IMEHD). The voice signal processing module for F-IMEHD should be designed to compensate for the hearing loss of hearing impaired person and have the flexibility for compensating various hearing threshold level. So, the voice signal processing module has been designed and implemented to present the various frequency characteristics using the low-power micro processor, MSP430F169. The different voice signal path to the inner ear entrance was considered so that two voice signal would be combined in-phase using an all pass filter with a constant time-delay to improve the vibration of the ossicles.

  • An Efficient Architecture of High-Performance Deblocking Filter for H.264/AVC

    Seonyoung LEE  Kyeongsoon CHO  

     
    LETTER

      Vol:
    E89-A No:6
      Page(s):
    1736-1739

    We devised an efficient architecture of deblocking filter and implemented the circuit with 15,400 logic gates and a 16032 dual-port SRAM using 0.25 µm standard cell technology. This circuit can process 88 image frames with 1,280720 pixels per second at 166 MHz. Our circuit requires smaller number of accesses to the external memory than other approaches and hence causes less bus traffic in the SoC design platform.

  • A Microstrip Phase Shifter Design Using a Switch-Loaded Ground Plate

    Dowon KIM  Moonil KIM  

     
    LETTER-Devices/Circuits for Communications

      Vol:
    E89-B No:6
      Page(s):
    1873-1875

    A microstrip phase shifter design that uses a reconfigurable metal pattern on the EBG ground plate is introduced. The EBG ground plate metal pattern contains a linear array of thin slots with switching devices loaded at the center. This design can vary the phase constant with minimum mismatch loss over a large frequency bandwidth. Several test ground plates without actual switching devices were used to verify the design concept.

  • Ultrathin HfOxNy Gate Insulator Formation by Electron Cyclotron Resonance Ar/N2 Plasma Nitridation of HfO2 Thin Films

    Shun-ichiro OHMI  Tomoki KUROSE  Masaki SATOH  

     
    PAPER-Si Devices and Processes

      Vol:
    E89-C No:5
      Page(s):
    596-601

    HfOxNy thin films formed by the electron cyclotron resonance (ECR) Ar/N2 plasma nitridation of HfO2 films were investigated for high-k gate insulator applications. HfOxNy thin films formed by the ECR Ar/N2 plasma nitridation (60 s) of 1.5-nm-thick HfO2 films, which were deposited on chemically oxidized Si(100) substrates, were found to be effective for suppressing interfacial layer growth or crystallization during postdeposition annealing (PDA) in N2 ambient. After 900 PDA of for 5 min in N2 ambient, it was found that HfSiON film with a relatively high dielectric constant was formed on the HfOxNy/Si interface by Si diffusion. An equivalent oxide thickness (EOT) of 2.0 nm and a leakage current density of 1.010-3 A/cm2 (at VFB-1 V) were obtained. The effective mobility of the fabricated p-channel metal-insulator-semiconductor field-effect transistor (MISFET) with the HfOxNy gate insulator was 50 cm2/Vs, and the gate leakage current of the MISFET with the HfOxNy gate insulator was found to be well suppressed compared with the MISFET with the HfO2 gate insulator after 900 PDA because of the nitridation of HfO2.

  • Design of 1 m2 Order Plasma Excitation Single-Layer Slotted Waveguide Array with Conducting Baffles and Quartz Glass Strips Using the GSM-MoM Analysis

    Takuichi HIRANO  Kimio SAKURAI  Jiro HIROKAWA  Makoto ANDO  Tetsuya IDE  Atsushi SASAKI  Kazufumi AZUMA  Yukihiko NAKATA  

     
    PAPER-Antennas and Propagation

      Vol:
    E89-B No:5
      Page(s):
    1627-1635

    The authors have proposed a 1 m2 single-layer slotted waveguide array consisting of conducting baffles and quartz glass strips positioned in front of the slot aperture, which is referred to as a vacuum window, for microwave plasma excitation. The effect of the complicated outer vacuum window hinders the realization of uniform distribution. In this paper, a unit-cell of the alternating-phase fed single-layer slotted waveguide array with the vacuum window is analyzed by generalized scattering matrix method (GSM)-method of moments (MoM) hybridization analysis, and the array is designed to realize uniform aperture electromagnetic field distribution, where the plasma and the chamber is neglected. The GSM-MoM analysis gives reliable numerical results while the MoM has numerical errors due to singularities of Green's function for a long cavity. Uniform aperture EM field distribution outside of the vacuum window is observed in near field measurements using a 1/5 scale model antenna, and the validity of the analysis and design is verified.

  • 2-D Laplace-Z Transformation

    Yang XIAO  Moon Ho LEE  

     
    LETTER-Digital Signal Processing

      Vol:
    E89-A No:5
      Page(s):
    1500-1504

    Based on recent results for 2-D continuous-discrete systems, this paper develops 2-D Laplace-z transform, which can be used to analyze 2-D continuous-discrete signals and system in Laplace-z hybrid domain. Current 1-D Laplace transformation and z transform can be combined into the new 2-D s-z transform. However, 2-D s-z transformation is not a simple extension of 1-D transform, in 2-D case, we need consider the 2-D boundary conditions which don't occur in 1-D case. The hybrid 2-D definitions and theorems are given in the paper. To verify the results of this paper, we also derived a numerical inverse 2-D Laplace-z transform, applying it to show the 2-D pulse response of a stable 2-D continuous-discrete system.

  • A Growth Model for Root Systems of Virtual Plants with Soil and Moisture Control

    Jijoon KIM  

     
    PAPER-Computer Graphics

      Vol:
    E89-D No:5
      Page(s):
    1743-1750

    A realistic computer graphics (CG) model of root growth that accounts for the effects of soil obstruction and moisture variations is proposed. While the exposed parts of plants have been modeled extensively in CG, realistic root models have received little attention, and the potential effects of root characteristics on the growth of foliage has yet to be considered in detail. The proposed model represents roots as series of bend points and link points and defines the root systems as a layered structure formed by roots connected via link points. This approach allows for two general types of root systems based on branching probabilities of lateral and adventitious roots: main root systems consisting of a thick main root and thinner lateral roots, and fibrous root systems consisting of adventitious roots of relatively uniform diameter. The model also expresses the behavior of root growth in terms of hydrotropism, gravitropism, flexion and growth inhibition by assigning gravity, moisture and consistency parameters to underground voxels. The model is shown through simulations of various growth conditions to generate individualized root systems that reflect the growth environment and characteristics of the plant.

  • A Probe-Fed U-Shaped Cross-Sectional Antenna with Tuning Stubs on a U-Shaped Ground Plane

    Duang-arthit SRIMOON  Chuwong PHONGCHAROENPANICH  Monai KRAIRIKSH  

     
    PAPER-Antennas and Propagation

      Vol:
    E89-B No:5
      Page(s):
    1636-1645

    A probe-fed U-shaped cross-sectional antenna with tuning stubs on a U-shaped ground plane is proposed for wideband applications. The bottom of the antenna is etched to form tuning stubs for impedance matching. The simulated results of return loss, co- and cross-polarized patterns are presented and compared with the measured ones. Characteristics of a constructed antenna prototype at the operating frequency show that the antenna has an impedance bandwidth (2:1 VSWR) of 37.44% and average gain level of 8.5 dBi. Good radiation characteristics of the proposed antenna have been obtained that is the cross-polarization level and front-to-back ratio in both E- and H-planes across the large bandwidth are better than 22 dB and 12 dB, respectively.

741-760hit(1376hit)