The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] PULSE(405hit)

281-300hit(405hit)

  • Dispersion Compensation for Ultrashort Light Pulse CDMA Communication Systems

    Yasutaka IGARASHI  Hiroyuki YASHIMA  

     
    PAPER-Fiber-Optic Transmission

      Vol:
    E85-B No:12
      Page(s):
    2776-2784

    We investigate dispersion compensation using dispersion-compensating fibers (DCFs) for ultrashort light pulse code division multiple access (CDMA) communication systems in a multi-user environment. We employ fiber link that consists of a standard single-mode fiber (SMF) connected with two different types of DCFs. Fiber dispersion can be effectively decreased by adjusting the length ratios of DCFs to SMF appropriately. Some criteria for dispersion compensation are proposed and their performances are compared. We theoretically derive a bit error rate (BER) of ultrashort light pulse CDMA systems including the effects of the dispersion and multiple access interference (MAI). Moreover, we reveal the mutual relations among BER performance, fiber dispersion, MAI, the number of chips, a bandwidth of a signal, and a transmission distance for the first time. As a result, we show that our compensation strategy improves system performance drastically.

  • Recursive Least Absolute Error Algorithm: Analysis and Simulations

    Shin'ichi KOIKE  

     
    PAPER-Digital Signal Processing

      Vol:
    E85-A No:12
      Page(s):
    2886-2893

    Recursive least absolute(RLA) error algorithm is derived which is basically the sign algorithm (SA) combined with recursive estimation of the inverse covariance matrix of the reference input. The name RLA comes from the absolute error criterion. Analysis of the transient behavior and steady-state performance of the RLA algorithm is fully developed. Results of experiment show that the RLA algorithm considerably improves the convergence rate of the SA while preserving the robustness against impulse noise. Good agreement between the simulation and the theoretically calculated convergence validates the analysis.

  • Multiuser Interference Suppression in Uplink Multicarrier CDMA Systems

    Chihiro FUJITA  Yoshitaka HARA  Yukiyoshi KAMIO  

     
    PAPER-Spread Spectrum Technologies and Applications

      Vol:
    E85-A No:10
      Page(s):
    2256-2262

    We investigated the suppression of multiuser interference in uplink multicarrier CDMA systems using the minimum mean squared error combining (MMSEC) method. In MMSEC, many pilot symbols are required to converge the weight vectors, and if we use just a few pilot symbols, the performance cannot be improved very much. We therefore developed a method for calculating weight vectors for MMSEC that uses just a few pilot symbols. The impulse responses of all users are first estimated using the pilot symbols in the time domain and modulated by a discrete Fourier transform. Next, the correlation matrices and correlation vectors are estimated from the impulse responses and the spreading codes of all users. Finally, the weight vectors that are obtained from the correlation matrices and correlation vectors are multiplied by the received signal to suppress the multiuser interference. The results of computer simulations indicated that the bit-error-ratio performance obtained using this method was better than that obtained when using the conventional fading compensation scheme or when using conventional MMSEC with the recursive least squares algorithm.

  • Sub-Picosecond Transform-Limited 160 Gbit/s Optical Pulse Compression Using Supercontinuum Generation

    Jun INOUE  Hideyuki SOTOBAYASHI  Wataru CHUJO  

     
    LETTER-Lasers, Quantum Electronics

      Vol:
    E85-C No:9
      Page(s):
    1718-1719

    A simple system configuration was used to generate transform-limited optical pulses at 160 Gbit/s in the sub-picosecond range (625 fs). Pulse compression was achieved by broadening the spectrum using supercontinuum generation followed by a linear frequency chirping compensation.

  • An Hadamard Transform Chip Using the PWM Circuit Technique and Its Application to Image Processing

    Kousuke KATAYAMA  Atsushi IWATA  Takashi MORIE  Makoto NAGATA  

     
    PAPER

      Vol:
    E85-C No:8
      Page(s):
    1596-1603

    A circuit that carries out an Hadamard transform of an input image using the pulse width modulation technique is proposed. The proposed circuit architecture realizes the function of an Hadamard transform with a full-size pixel image. A test chip that we designed and fabricated integrates 64 64 pixels in a 4.9 mm 4.9 mm area, with 0.35 µm CMOS technology. The functional operation and linearity of this chip are measured. An image processing application utilizing this chip is demonstrated.

  • Average Model for Pulse Width Modulator in Voltage-Mode-Controlled PWM Converters

    Sung-Soo HONG  Byungcho CHOI  

     
    LETTER-Network

      Vol:
    E85-B No:7
      Page(s):
    1415-1417

    The conventional average model for a pulse width modulator employed in a voltage-mode-controlled pulse width modulated converter tends to be numerically unstable when the on-time duty ratio becomes sufficiently small. This paper presents a new average model for a voltage-mode control modulator that is not susceptible to such numerical problems. The validity of the proposed model is confirmed with cycle-by-cycle simulations using an exact discrete-time model.

  • Development of a 5.3-GHz Klystron for a Pulsed Doppler Radar

    Kyosuke HAMAZU  Kazuhisa HEMMI  Kazutaka HAYASHI  Hiroyuki HASHIGUCHI  Shoichiro FUKAO  

     
    PAPER-Antenna and Propagation

      Vol:
    E85-B No:6
      Page(s):
    1152-1159

    A 5.3-GHz klystron has been recently designed and fabricated. In many countries, the transmitting frequency of 5.6 GHz (5,600 to 5,650 MHz) is commonly used for C-band meteorological radars. However, 5.3 GHz is generally used in Japan. To detect low-level wind shears by a Doppler radar, it is essential to use a MOPA (Master Oscillator and Power Amplifier) that generates stable coherent microwaves. The klystron is most suitable for this purpose. However, there are no commercially available klystrons in C-band that operate at 5.3 GHz. We developed a klystron for this band, making use of a simulation technique originally devised for S- and X-bands. The klystron operates at frequencies between 5,250 and 5,350 MHz. The typical operating parameters are a peak output power of 200 kW, a pulse width of 1 µs, and an RF duty cycle of 0.002. The klystron, including the electromagnet for focusing the magnetic field, is approximately 67 cm long with a diameter of 40 cm and a weight of 162 kg. Phase modulation is suppressed below 20% of the phase change required for the minimum resolution of Doppler velocity measurement by the radar for which this klystron is employed. The klystron shows favorable performance for Doppler radars operated in major airports in Japan.

  • Application of Organic Light Emitting Diode Based on the Alq3 Emissive Layer to the Electro-Optical Conversion Device

    Hirotake KAJII  Takahisa TSUKAGAWA  Takayuki TANEDA  Yutaka OHMORI  

     
    LETTER-Electronic Devices

      Vol:
    E85-C No:6
      Page(s):
    1245-1246

    The optical pulses of 50 MHz has been obtained from an organic light emitting diode (OLED) based on the Alq3 emissive layer with the active area of 0.01 mm2. We demonstrate that the OLEDs can be applied to fields of optical communication as the electro-optical conversion device for transmitting the signals of moving picture.

  • Reverse Link Bandwidth Efficiency of a Spectrally Overlapped CDMA System

    Duk Kyung KIM  Fumiyuki ADACHI  

     
    PAPER-Terrestrial Radio Communications

      Vol:
    E85-B No:4
      Page(s):
    758-768

    The reverse link bandwidth efficiency of a spectrally overlapped CDMA system with fast transmit power control is evaluated to find the optimum overlapping, where the bandwidth efficiency is defined as the maximum aggregate bit rate of all subsystems per unit bandwidth (bps/Hz). Single and multiple cell environments are considered. Besides the rectangular chip pulse, the impact of a pulse-shaping filter is discussed. It is found that the raised cosine spectrum pulse shaping helps to increase the bandwidth efficiency and strict pulse shaping filter problem can be avoided if a large number of subsystems are overlapped. It is also found that the optimum carrier spacing remains unchanged irrespective of the power delay profile shape of the multipath channel, whether multipath fading exists or not, and whether a single cell or multiple cell system is considered. However, the bandwidth efficiency strongly depends on them and the impacts of the related parameters are discussed.

  • The Width-Conversion of an Optical Signal by Using an Erbium-Doped Fiber and an Asymmetric Optical Circuit

    Ki-Hwan PARK  Wataru CHUJO  

     
    LETTER-Fiber-Optic Transmission

      Vol:
    E85-B No:3
      Page(s):
    652-654

    We describe the width conversion of an optical signal by using an erbium-doped fiber and an asymmetric optical circuit. The width of an optical signal was measured to be a respective 350 nsec and 200 nsec for a 70 m and 40 m fiber (Lf). The width of the pumping pulse was 5 nsec and the length of erbium-doped fiber was 3 m. We also extended the optical signals to a respective 300 nsec and 150 nsec wide at a pumping pulse 10 nsec by inserting a 60 m and a 30 m fiber (Lf) inside a circuit.

  • Pulse Tube Cryocoolers for Electronic Applications

    Yoichi MATSUBARA  

     
    INVITED PAPER-Instruments and Coolers

      Vol:
    E85-C No:3
      Page(s):
    742-745

    Pulse tube cryocoolers receive considerable attention due to their intrinsically higher durability and lower vibrations than other regenerative coolers such as Gifford-McMahon or Stirling cycle coolers. This paper describes basic function and classification of the pulse tube cryocoolers from the viewpoint of electronic applications.

  • Image Segmentation/Extraction Using Nonlinear Cellular Networks and Their VLSI Implementation Using Pulse-Modulation Techniques

    Hiroshi ANDO  Takashi MORIE  Makoto MIYAKE  Makoto NAGATA  Atsushi IWATA  

     
    PAPER

      Vol:
    E85-A No:2
      Page(s):
    381-388

    This paper proposes a new method for image segmentation and extraction using nonlinear cellular networks. Flexible segmentation of complicated natural scene images is achieved by using resistive-fuse networks, and each segmented regions is extracted by nonlinear oscillator networks. We also propose a nonlinear cellular network circuit implementing both resistive-fuse and oscillator dynamics by using pulse-modulation techniques. The basic operation of the nonlinear network circuit is confirmed by SPICE simulation. Moreover, the 1010-pixel image segmentation and extraction are demonstrated by high-speed circuit simulation.

  • Analog Hardware Implementation of a Mathematical Model of an Asynchronous Chaotic Neuron

    Jun MATSUOKA  Yoshifumi SEKINE  Katsutoshi SAEKI  Kazuyuki AIHARA  

     
    PAPER

      Vol:
    E85-A No:2
      Page(s):
    389-394

    A number of studies have recently been published concerning chaotic neuron models and asynchronous neural networks having chaotic neuron models. In the case of large-scale neural networks having chaotic neuron models, the neural network should be constructed using analog hardware, rather than by computer simulation via software, due to the high speed and high integration of analog circuits. In the present study, we discuss the circuit structure of a chaotic neuron model, which is constructed on the basis of the mathematical model of an asynchronous chaotic neuron. We show that the pulse-type hardware chaotic neuron model can be constructed on the basis of the mathematical model of an asynchronous chaotic neuron. The proposed model is an effective model for the cell body section of the pulse-type hardware chaotic neuron model for ICs. In addition, we show the bifurcation structure of our composed model, and discuss the bifurcation routes and return maps thereof.

  • Time-Resolved Diffuse Optical Tomography Using a Modified Generalized Pulse Spectrum Technique

    Feng GAO  Huijuan ZHAO  Yukari TANIKAWA  Yukio YAMADA  

     
    PAPER-Optical Imaging

      Vol:
    E85-D No:1
      Page(s):
    133-142

    Generalized Pulse Spectrum Technique (GPST) is a method to solve the inverse problems of wave-propagation and diffusion-dominated phenomena, and therefore has been popularly applied in image reconstruction of time-resolved diffuse optical tomography. With a standard GPST for simultaneous reconstruction of absorption and scattering coefficients, the products of the gradients of the Green's function and the photon-density flux, based on the photon-diffusion equation, are required to calculate the diffusion-related Jacobian matrix. The adversities are of two-folds: time-consuming and singular in the field near the source. The latter causes a severe insensitivity of the algorithm to the scattering changes deep inside tissue. To cope with the above difficulties, we propose in this paper a modified GPST algorithm that only involves the Green's function and the photon-density flux themselves in the scattering-related matrix. Our simulated and experimental reconstructions show that the modified algorithm can significantly improve the quality of scattering image and accelerate the reconstruction process, without an evident degradation in absorption image.

  • Recent Studies on InGaAsP and TiO2/Si Planar Asymmetric Coupled Waveguides as Dispersion Compensators

    Yong LEE  

     
    PAPER

      Vol:
    E85-C No:1
      Page(s):
    190-194

    Two planar asymmetric coupled waveguides were fabricated by using different materials (InGaAsP and TiO2/Si) and tested as dispersion compensators (or pulse compressors). Compression of a more-than-10-ps chirped pulse is experimentally demonstrated by using an InGaAsP planar asymmetric coupled waveguide whose group velocity dispersion (GVD) is enhanced by structural optimization and is spectrally tuned to an input pulse as precisely as possible. A large polarization dependence of the pulse compression was also observed and indicates that the observed pulse compression results from dispersion compensation due to the GVD associated with supermodes. A new planar, asymmetric coupled waveguide with a large difference in refractive indices of the two waveguides was fabricated by using a combination of dielectric (TiO2) and semiconductor (Si) materials in order to obtain better GVD characteristics than semiconductor (for example, InGaAsP) asymmetric coupled waveguides. A preliminary experiment on pulse compression using the TiO2/Si planar asymmetric coupled waveguide was conducted. A 2.8-ps blue chirped pulse was compressed down to about 1 ps by a 1-mm-long waveguide (compression ratio: 0.375, which is better than those of the previous InGaAsP planar asymmetric coupled waveguides). This compression ratio agrees well with a theoretical result obtained by a numerical model based on a supermode's GVD.

  • Evaluation of the Response Function and Its Space Dependence in Chirp Pulse Microwave Computed Tomography (CP-MCT)

    Michio MIYAKAWA  Kentaroh ORIKASA  Mario BERTERO  

     
    PAPER-Measurement Technology

      Vol:
    E85-D No:1
      Page(s):
    52-59

    In Chirp-Pulse Microwave Computed Tomography (CP-MCT) the images are affected by the blur which is inherent to the measurement principle and is described by a space-variant Point Spread Function (PSF). In this paper we investigate the PSF of CP-MCT including the space dependence both experimentally and computationally. The experimental evaluation is performed by measuring the projections of a target consisting of a thin low-loss dielectric rod surrounded by a saline solution and placed at various positions in the measuring region. On the other hand, the theoretical evaluation is obtained by computing the projections of the same target via a numerical solution of Maxwell's equations. Since CP-MCT uses a chirp signal, the numerical evaluation is carried out by the use of a FD-TD method. The projections of the rod could be obtained by computing the field during the sweep time of the chirp signal for each position of the receiving antenna. Since this procedure is extremely time consuming, we compute the impulse response function of the system by exciting the transmitting antenna with a wide-band Gaussian pulse. Then the signal transmitted in CP-MCT is obtained by computing the convolution product in time domain of the input chirp pulse with the impulse response function of the system. We find a good agreement between measured and computed PSF. The rationality of the computed PSF is verified by three distinct ways and the usefulness of this function is shown by a remarkable effect in the restoration of CP-MCT images. Knowledge on the space-variant PSF will be utilized for more accurate image deblurring in CP-MCT.

  • Highly Reliable Mode-Locked Semiconductor Lasers

    Hiroyuki YOKOYAMA  

     
    INVITED PAPER

      Vol:
    E85-C No:1
      Page(s):
    27-36

    Very reliable mode-locked semiconductor lasers have been developed. These devices provide high signal-to-noise ratio optical clock pulses of a few picoseconds temporal width in the 1.5-micrometer wavelength region. Potential applications of these lasers for high-bit-rate optical communication systems operating at over 40 Gbps including all-optical signal processing, and for very high-speed measurement systems are described.

  • The Femtosecond Technology Project Pioneers Ultrafast Photonic Device Technology for the Next Generation Photonic Networking

    Fujio SAITO  

     
    INVITED PAPER-Femtosecond Technology for Photonic Networks

      Vol:
    E85-C No:1
      Page(s):
    106-116

    Recent activities on ultrafast photonic device technology development in the Femtosecond Technology Project sponsored by NEDO are introduced. Topics include management and control of the higher order dispersions of optical fibers, ultrafast mode-locked semiconductor laser, symmetric Mach-Zehnder type all-optical switch, ultrafast serial-to-parallel signal converter and sub-picosecond wavelength switch. Challenges towards novel ultrafast switching material systems are also described.

  • Fourier Synthesis of Stable Ultrafast Optical-Pulse Trains Using Three Lasers and an SOA

    Masaharu HYODO  Kazi SARWAR ABEDIN  Noriaki ONODERA  Kamal K. GUPTA  Masayoshi WATANABE  

     
    LETTER-Optical Pulse Compression, Control and Monitoring

      Vol:
    E85-C No:1
      Page(s):
    165-166

    Fourier synthesis of ultrafast optical-pulse trains was demonstrated using a simplified experimental configuration consisting of three independent continuous-wave lasers and a semiconductor optical amplifier (SOA) used as a four-wave mixer. When the three lasers were phase-locked, ultrafast optical-pulse trains were successfully generated at repetition frequencies ranging from 504 GHz to 1.8 THz with high waveform stability.

  • Sub-100 fs Higher Order Soliton Compression in Dispersion-Flattened Fibers

    Masahiro TSUCHIYA  Koji IGARASHI  Satoshi SAITO  Masato KISHI  

     
    INVITED PAPER-Optical Pulse Compression, Control and Monitoring

      Vol:
    E85-C No:1
      Page(s):
    141-149

    We review recent progresses in our studies on the fiber-optic soliton compression and related subjects with special emphasis on dispersion-flattened fibers (DFFs). As for the ultimately short pulse generation, it has been demonstrated to compress 5 ps laser diode pulses down to 20 fs with a 15.1 m-long single-stage step-like dispersion profiled fiber employed. The compression was brought about through a series of the higher order soliton processes in conjunction with a single and ordinary erbium-doped fiber preamplifier, and DFFs contained at its end played a major role. We have performed intensive investigations on the DFF compression mechanisms in the 100-20 fs range. A fairly reliable model was developed for the higher order soliton propagation along a DFF in the temporal range from 100 down to 30 fs by taking into consideration the higher order nonlinear and dispersion effects as well as incident pulse shape dependence. Through the simulation, parametric spectrum generation originating from the modulation instability gain was pointed out at frequencies apart from the pump wave frequency, which agrees with the experimental observation. Its possible application is also discussed.

281-300hit(405hit)