The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] PULSE(405hit)

181-200hit(405hit)

  • Channel Estimation Based on Adaptive Neuro-Fuzzy Inference System in OFDM

    M. Nuri SEYMAN   Necmi TAPINAR  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:7
      Page(s):
    2426-2430

    In this letter we purpose adaptive neuro-fuzzy inference system (ANFIS) for channel estimation in orthogonal frequency division multiplexing (OFDM) systems. To evaluate the performance of this estimator, we compare the ANFIS with least square (LS) algorithm, minimum mean square error (MMSE) algorithm by using bit error rate (BER) and mean square error (MSE) criterias. According to computer simulations the performance of ANFIS has better performance than LS algorithm and close to MMSE algorithm. Besides there is unnecessity to send pilot when used the ANFIS.

  • Cross-Correlation by Single-bit Signal Processing for Ultrasonic Distance Measurement

    Shinnosuke HIRATA  Minoru Kuribayashi KUROSAWA  Takashi KATAGIRI  

     
    PAPER

      Vol:
    E91-A No:4
      Page(s):
    1031-1037

    Ultrasonic distance measurement using the pulse-echo method is based on the determination of the time of flight of ultrasonic waves. The pulse-compression technique, in which the cross-correlation function of a detected ultrasonic wave and a transmitted ultrasonic wave is obtained, is the conventional method used for improving the resolution of distance measurement. However, the calculation of a cross-correlation operation requires high-cost digital signal processing. This paper presents a new method of sensor signal processing within the pulse-compression technique using a delta-sigma modulated single-bit digital signal. The proposed sensor signal processing method consists of a cross-correlation operation employing single-bit signal processing and a smoothing operation involving a moving average filter. The proposed method reduces the calculation cost of the digital signal processing of the pulse-compression technique.

  • Optimum Pulse Shape Design for UWB Systems with Timing Jitter

    Wilaiporn LEE  Suwich KUNARUTTANAPRUK  Somchai JITAPUNKUL  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E91-B No:3
      Page(s):
    772-783

    This paper proposes a novel technique in designing the optimum pulse shape for ultra wideband (UWB) systems under the presence of timing jitter. In the UWB systems, pulse transmission power and timing jitter tolerance are crucial keys to communications success. While there is a strong desire to maximize both of them, one must be traded off against the other. In the literature, much effort has been devoted to separately optimize each of them without considering the drawback to the other. In this paper, both factors are jointly considered. The proposed pulse attains the adequate power to survive the noise floor and at the same time provides good resistance to the timing jitter. The proposed pulse also meets the power spectral mask restriction as prescribed by the Federal Communications Commission (FCC) for indoor UWB systems. Simulation results confirm the advantages of the proposed pulse over other previously known UWB pulses. Parameters of the proposed optimization algorithm are also investigated in this paper.

  • 0.7-GHz-Bandwidth DS-UWB-IR System for Low-Power Wireless Communications

    Ryosuke FUJIWARA  Akira MAEKI  Kenichi MIZUGAKI  Goichi ONO  Tatsuo NAKAGAWA  Takayasu NORIMATSU  Masaru KOKUBO  Masayuki MIYAZAKI  Yasuyuki OKUMA  Miki HAYAKAWA  Shinsuke KOBAYASHI  Noboru KOSHIZUKA  Ken SAKAMURA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E91-B No:2
      Page(s):
    518-526

    A direct-sequence ultra-wideband impulse radio (DS-UWB-IR) system is developed for low-power wireless applications such as wireless sensor networks. This system adopts impulse radio characterized by a low duty cycle, and a direct-sequence 0.7-GHz bandwidth, which enables low-power operation and extremely precise positioning. Simulation results reveal that the system achieves a 250-kbps data rate for 30-m-distance wireless communications using realistic specifications. We also conduct an experiment that confirms the feasibility of our system.

  • Design and Implementation of Energy-Collection-Based Low Complexity IR-UWB Receiver

    Soon-Woo LEE  Young-Jin PARK  Kwan-Ho KIM  

     
    LETTER-Communication Theory and Signals

      Vol:
    E91-A No:2
      Page(s):
    704-708

    In this paper, an energy-collection-based non-coherent IR-UWB receiver allowing low complexity and low power consumption is proposed for short range data communication. The proposed receiver consists of an on-the-fly integrator, a 1-bit digital sampler, a pre-processor and a digital symbol synchronizer. The on-the-fly integrator for energy collection and the 1-bit digital sampler reduce complexity of IR-UWB system. Furthermore, with a simple digital filter in the pre-processing unit, SNR and robustness of the receiver against time-varying channel are enhanced. Also the receiver complexity is diminished by a simple scheme of symbol synchronization based on rough time information about incoming pulses, not requiring exact timing information. The performance of the proposed receiver is simulated based on IEEE 802.15.4a channel model and the algorithms are implemented and verified on a FPGA.

  • An ML Timing Estimator in UWB Communication Systems

    Sangchoon KIM  Kyoungsoo SON  Bongsoon KANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:1
      Page(s):
    339-342

    The problem of estimating the timing of ultra-wide band signal is considered in the letter. We develop a maximum likelihood timing estimation algorithm for binary PAM DS-UWB systems. The derivation of the proposed algorithm is based on the known training sequence and AWGN channel. The Cramer-Rao Bound (CRB) for the ML timing estimator is presented as a performance benchmark. It is found via numerical results that the ML timing estimator on AWGN channels achieves the CRB when the values of Eb/N0 for the observation bits Nb=50 are sufficiently high. Finally, the performance of the proposed ML estimator is evaluated on actual channels with intersymbol interference such as an IEEE UWB indoor multipath channel model.

  • Effect of Group Delay in RF BPF on Impulse Radio Systems

    Seong-Sik MYOUNG  Bong-Su KWON  Young-Hwan KIM  Jong-Gwan YOOK  

     
    PAPER-Devices/Circuits for Communications

      Vol:
    E90-B No:12
      Page(s):
    3514-3522

    This paper presents an analysis of the effects of RF filter characteristics on the system performance of an impulse radio. The impulse radio system transmits modulated pulses having very short time duration. Information can be extracted in the receiver side based on the cross-correlation between received and reference pulses. Accordingly, the pulse distortion due to in-band group delay variation can cause serious degradation in system performance. In general, RF band pass filters inevitably cause non-uniform group delays to the signal passing through the filter that are proportional to its skirt characteristic due to its resonance phenomenon. In this work, a small signal scattering parameter, S21, which is a frequency domain parameter, and its Fourier transform are utilized to characterize the output pulse waveform under the condition that the input and output ports are matched. The output pulse waveform of the filter is predicted based on the convolution integral between the input pulse and filter transfer function, and the analysis result is compared with previously reported experimental result. The resulting bit error rate performances in a bi-phase modulation and a pulse position modulation based impulse radio system are also calculated. Moreover, improvement of system performance by the pulse shaping method, a potential solution for pulse waveform distortion, is analyzed.

  • Pulse-Width Modulation with Current Uniformization for TFT-OLEDs

    Mutsumi KIMURA  Shigeki SAWAMURA  Masakazu KATO  Yuji HARA  Daisuke SUZUKI  Hiroyuki HARA  Satoshi INOUE  

     
    INVITED PAPER

      Vol:
    E90-C No:11
      Page(s):
    2076-2082

    A novel driving concept, "pulse-width modulation with current uniformization," is proposed for thin-film transistor driven organic light-emitting diode displays (TFT-OLEDs). An example of this driving concept is the combination of "pulse-width modulation with a self-biased inverter" and a "time-ratio grayscale with current uniformization." Its driving operation is confirmed by circuit simulation. It is found that this driving method can compensate the characteristic deviations and degradations of both TFTs and OLEDs and immensely improve luminance uniformity. Finally, its driving operation is also confirmed by an actual pixel equivalent circuit.

  • Preliminary Demonstration of 1.0 V CMOS Imager with Semi-Pixel-Level ADC Based on Pulse-Width-Modulation Pixel Readout

    Keiichiro KAGAWA  Makoto SHOUHO  Kazuo HASHIGUCHI  Masahiro NUNOSHITA  Jun OHTA  

     
    LETTER

      Vol:
    E90-C No:10
      Page(s):
    2007-2011

    We demonstrate low-voltage operation of a CMOS imager with an in-pixel large-gain comparator without degradation of the dynamic range by using a pulse-width-modulation scheme in pixel readout. Experimental results showed a dynamic range of 57 dB with a 1.0 V power supply voltage at the pixel array block, which demonstrates the possibility of low-voltage, single-power-supply operation of imagers fabricated with deep-submicron CMOS technologies.

  • An Inhibitory Neural-Network Circuit Exhibiting Noise Shaping with Subthreshold MOS Neuron Circuits

    Akira UTAGAWA  Tetsuya ASAI  Tetsuya HIROSE  Yoshihito AMEMIYA  

     
    PAPER-Neuron and Neural Networks

      Vol:
    E90-A No:10
      Page(s):
    2108-2115

    We designed subthreshold analog MOS circuits implementing an inhibitory network model that performs noise-shaping pulse-density modulation (PDM) with noisy neural elements, with the aim of developing a possible ultralow-power one-bit analog-to-digital converter. The static and dynamic noises given to the proposed circuits were obtained from device mismatches of current sources (transistors) and externally applied random spike currents, respectively. Through circuit simulations we confirmed that the circuit exhibited noise-shaping properties, and signal-to-noise ratio (SNR) of the network was improved by 7.9 dB compared with that of the uncoupled network as a result of noise shaping.

  • Design of M-Channel Perfect Reconstruction Filter Banks with IIR-FIR Hybrid Building Blocks

    Shunsuke IWAMURA  Taizo SUZUKI  Yuichi TANAKA  Masaaki IKEHARA  

     
    PAPER-Digital Signal Processing

      Vol:
    E90-A No:8
      Page(s):
    1636-1643

    This paper discusses a new structure of M-channel IIR perfect reconstruction filter banks. A novel building block defined as a cascade connection of some IIR building blocks and FIR building blocks is presented. An IIR building block is written by state space representation, where we easily obtain a stable filter bank by setting eigenvalues of the state transition matrix into the unit circle. Due to cascade connection of building blocks, we are able to design a system with a larger number of free parameters while keeping the stability. We introduce the condition which obtains the new building block without increasing of the filter order in spite of cascade connection. Additionally, by showing the simulation results, we show that this implementation has a better stopband attenuation than conventional methods.

  • Explicit Formula for Predictive FIR Filters and Differentiators Using Hahn Orthogonal Polynomials

    Saed SAMADI  Akinori NISHIHARA  

     
    PAPER

      Vol:
    E90-A No:8
      Page(s):
    1511-1518

    An explicit expression for the impulse response coefficients of the predictive FIR digital filters is derived. The formula specifies a four-parameter family of smoothing FIR digital filters containing the Savitsky-Goaly filters, the Heinonen-Neuvo polynomial predictors, and the smoothing differentiators of arbitrary integer orders. The Hahn polynomials, which are orthogonal with respect to a discrete variable, are the main tool employed in the derivation of the formula. A recursive formula for the computation of the transfer function of the filters, which is the z-transform of a terminated sequence of polynomial ordinates, is also introduced. The formula can be used to design structures with low computational complexity for filters of any order.

  • A Short Delay Relay Scheme Using Shared Frequency Repeater for UWB Impulse Radio

    Chihong CHO  Honggang ZHANG  Masao NAKAGAWA  

     
    PAPER-Communication Theory and Signals

      Vol:
    E90-A No:7
      Page(s):
    1444-1451

    The transmit power of Ultra Wideband (UWB) is limited in short range communications to avoid the interference with existing narrow-band communication systems. Since this limits UWB communication range, this paper proposes a novel relay scheme that uses shared frequency repeaters for impulse UWB signal relay to improve system range. After considering possible problems with the repeater, in particular the coupling interference between the input and output and relay-delay, a switching control method is proposed that offers short relay-delay and suppresses the coupling interference at the repeaters. With respect to the proposed relay scheme, Pulse-Position-Modulation (PPM) UWB-based signal relay is evaluated by analyzing its BER performance using the point-to-point transmission link model.

  • A Robust and Fast Imaging Algorithm with an Envelope of Circles for UWB Pulse Radars

    Shouhei KIDERA  Takuya SAKAMOTO  Toru SATO  

     
    PAPER-Sensing

      Vol:
    E90-B No:7
      Page(s):
    1801-1809

    Target shape estimation with UWB pulse radars is a promising imaging technique for household robots. We have already proposed a fast imaging algorithm, SEABED, that is based on a reversible transform BST (Boundary Scattering Transform) between the received signals and the target shape. However, the target image obtained by SEABED deteriorates in a noisy environment because it utilizes a derivative of received data. In this paper, we propose a robust imaging method with an envelope of circles. We clarify by numerical simulation that the proposed method can realize a level of robust and fast imaging that cannot be achieved by the original SEABED.

  • Bit Error Rate Analysis of OFDM with Pilot-Assisted Channel Estimation

    Richol KU  Shinsuke TAKAOKA  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E90-B No:7
      Page(s):
    1725-1733

    The objective of this paper is to develop the theoretical foundation to the pilot-assisted channel estimation using delay-time domain windowing for the coherent detection of OFDM signals. The pilot-assisted channel estimation using delay-time domain windowing is jointly used with polynomial interpolation, decision feedback and Wiener filter. A closed-form BER expression is derived. The impacts of the delay-time domain window width, multipath channel decay factor, the maximum Doppler frequency are discussed. The theoretical analysis is confirmed by computer simulation.

  • Minimum-Maximum Exclusive Interpolation Filter for Image Denoising

    Jinsung OH  Younam KIM  

     
    LETTER-Digital Signal Processing

      Vol:
    E90-A No:6
      Page(s):
    1228-1231

    In this paper, we present a directional interpolation filter in which the minimum and maximum pixels in the given window are excluded. Image pixels within a predefined window are ranked and classified as minimum-maximum or exclusive level, and then passed through the interpolation and identity filters, respectively. Extensive simulations show that the proposed filter performs better than other nonlinear filters in preserving desired image features while reducing impulse noise effectively.

  • Characterization and Performance of High-Frequency Pulse Transmission for Human Body Area Communications

    Jianqing WANG  Yuji NISHIKAWA  

     
    PAPER-Human-Body-Area Communication

      Vol:
    E90-B No:6
      Page(s):
    1344-1350

    With the rapid progress of electronic and information technology, an expectation for the realization of body area network (BAN) has risen. However, on-body transmission characteristics are greatly dependent on the frequency, and a high-speed transmission is difficult due to the remarkable signal attenuation at higher frequencies. In this study, we proposed a pulse transmission system with the frequencies at dozens of mega-hertzes. The system was based on an impulse radio (IR) scheme with bi-phase modulation. By using the frequency-dependent finite difference time domain (FD2TD) method, we investigated the on-body transmission characteristics and derived a path loss expression. Based on the transmission characteristics, we also investigated the influences of white Gaussian noises and other narrow-band interferences on the communication link budget and bit error rate (BER) performance. The results have shown the feasibility of the proposed on-body IR communication system.

  • A High-Resolution Imaging Algorithm without Derivatives Based on Waveform Estimation for UWB Radars

    Shouhei KIDERA  Takuya SAKAMOTO  Toru SATO  

     
    PAPER-Sensing

      Vol:
    E90-B No:6
      Page(s):
    1487-1494

    UWB pulse radars enable us to measure a target location with high range-resolution, and so are applicable for measurement systems for robots and automobile. We have already proposed a robust and fast imaging algorithm with an envelope of circles, which is suitable for these applications. In this method, we determine time delays from received signals with the matched filter for a transmitted waveform. However, scattered waveforms are different from transmitted one depending on the target shape. Therefore, the resolution of the target edges deteriorates due to these waveform distortions. In this paper, a high-resolution imaging algorithm for convex targets is proposed by iteration of the shape and waveform estimation. We show application examples with numerical simulations and experiments, and confirm its capability to detect edges of an object.

  • A Fast Algorithm for 3-Dimensional Imaging with UWB Pulse Radar Systems

    Takuya SAKAMOTO  

     
    PAPER-Sensing

      Vol:
    E90-B No:3
      Page(s):
    636-644

    Ultra-wideband pulse radars are promising candidates for 3-dimensional environment measurements by autonomous robots. Estimating 3-dimensional target shapes by scanning with an omni-directional antenna is an ill-posed inverse problem. Conventional algorithms such as the synthetic aperture method or parametric algorithms have a problem in terms of their calculation times. We have clarified the existence of a reversible transform between received data and target shapes for 3-dimensional systems. Calculation times are remarkably reduced by applying this transform because it directly estimates target shapes without iterations. We propose a new algorithm based on the transform and present an application example using numerical simulations. We confirm that the proposed algorithm has sufficient accuracy and a short calculation time.

  • HTS Sampler with Improved Circuit Design and Layout

    Michitaka MARUYAMA  Hironori WAKANA  Tsunehiro HATO  Hideo SUZUKI  Keiichi TANABE  Koichiro UEKUSA  Takeshi KONNO  Nobuya SATO  Masayuki KAWABATA  

     
    INVITED PAPER

      Vol:
    E90-C No:3
      Page(s):
    579-587

    This paper reviews our progress on the high-Tc superconducting (HTS) sampler development, covering from the circuit design to the latest experimental data in the sinusoidal and pulse waveform measurements. A computer simulation has revealed that our sampler circuit with an improved design enables waveform measurement with the bandwidth over 100 GHz even with the thermal noise at around 40 K. Using the HTS sampler circuits fabricated employing an improved layout, we demonstrated waveform measurements for sinusoidal signals with frequencies of up to 50 GHz, the upper limit of the signal generator we used, both in the voltage-input-type system with a high-frequency input line and in the current-input-type one with a superconducting pickup coil. In the pulse measurement using an on-chip sampler, we succeeded in observing pico-second-order-wide single flux quantum (SFQ) current pulses, suggesting the potential bandwidth of our HTS sampler of more than 125 GHz.

181-200hit(405hit)