The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] PULSE(405hit)

101-120hit(405hit)

  • 10-GHz High-Repetition Optical Short Pulse Generation from Wavelength-Tunable Quantum Dot Optical Frequency Comb Laser

    Naokatsu YAMAMOTO  Kouichi AKAHANE  Tetsuya KAWANISHI  Hideyuki SOTOBAYASHI  Yuki YOSHIOKA  Hiroshi TAKAI  

     
    PAPER

      Vol:
    E96-C No:2
      Page(s):
    187-191

    The quantum dot optical frequency comb laser (QD-CML) is an attractive photonic device for generating a stable emission of fine multiple-wavelength peaks. In the present paper, 1.0-GHz and 10-ps-order short optical pulsation is successfully demonstrated from a hybrid mode-locked QD-CML with an ultrabroadband wavelength tuning range in the T+O band. In addition, 10-GHz high-repetition intensity-stable short optical pulse generation with a high S/N ratio is successfully demonstrated using an external-cavity QD-CML with a 10th-harmonic mode-locking technique.

  • Amplification Characterization of Dissipative Soliton and Stretched Pulse Produced by Yb-Doped Fiber Laser Oscillator

    Junichi HAMAZAKI  Norihiko SEKINE  Iwao HOSAKO  

     
    BRIEF PAPER

      Vol:
    E96-C No:2
      Page(s):
    201-203

    To obtain an ultra-short high-intensity pulse source, we investigated the amplification characteristics of two types of pulses (dissipative soliton and stretched pulses) produced by our Yb-doped fiber laser oscillator. Our results show that the dissipative soliton pulse can be amplified with less deterioration than the stretched pulse.

  • ISI-Free Linear Combination Pulses with Better Performance

    Cesar AZURDIA-MEZA  Kyujin LEE  Kyesan LEE  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E96-B No:2
      Page(s):
    635-638

    In this letter we proposed the linear combination of two ISI-free pulses with different decay rates in order to obtain a new Nyquist pulse. The proposed pulse contains a new design parameter β, giving an additional degree of freedom to minimize the bit error probability performance in the presence of symbol-timing errors, for a given roll-off factor α. Several practical tools are implemented for evaluating the performance of the proposed filter. The novel pulse is evaluated in terms of the bit error probability performance in the presence of symbol-timing errors. Eye diagrams are presented to visually assess the vulnerability of the transmission system to ISI, and the maximum distortion is estimated as a quantitative measure of performance.

  • A Digitally-Controlled SMPS Using a Novel High-Resolution DPWM Generator Based on a Pseudo Relaxation-Oscillation Technique

    Ji-Hoon LIM  Won-Young JUNG  Yong-Ju KIM  Inchae SONG  Jae-Kyung WEE  

     
    PAPER-Electronic Circuits

      Vol:
    E96-C No:2
      Page(s):
    277-284

    We suggest a novel digitally-controlled SMPS using a high-resolution DPWM generator. In the proposed circuit, the duty ratio of the DPWM is determined by the voltage slope control of an internal capacitor using a pseudo relaxation-oscillation technique. This new control method has a simpler structure, and consumes less power compared to a conventional digitally-controlled SMPS. Therefore, the proposed circuit is able to operate at a high switching frequency (1 MHz10 MHz) obtained from a relatively low internal operating frequency (10 MHz100 MHz) with a small area. The maximum current of the core circuit is 2.7 mA, and the total current of the entire circuit, including the output buffer driver, is 15 mA at 10 MHz switching frequency. The proposed circuit is designed to supply a maximum 1A with maximum DPWM duty ratio of 90%. The output voltage ripple is 7 mV at 3.3 V output voltage. To verify the operation of the proposed circuit, we performed a simulation with Dongbu Hitek BCD 0.35 µm technology.

  • Extension of the LTV Phase Noise Model of Electrical Oscillators for the Output Harmonics

    Seyed Amir HASHEMI  Hassan GHAFOORIFARD  Abdolali ABDIPOUR  

     
    PAPER-Electronic Circuits

      Vol:
    E95-C No:12
      Page(s):
    1846-1856

    In this paper, using the Linear Time Variant (LTV) phase noise model and considering higher order harmonics generated by the oscillator output signal, a more general formula for transformation of the excess phase to the output signal is presented. Despite the basic LTV model which assumes that the total carrier power is within the fundamental harmonic, in the proposed model, the total carrier power is assumed to be distributed among all output harmonics. For the first harmonic, the developed expressions reduce to the basic LTV formulas. Simulation and experimental results are used to ensure the validity of the model.

  • MAC Protocol for Ad Hoc Networks Using Smart Antennas for Mitigating Hidden and Deafness Problems

    Jing MA  Hiroo SEKIYA  Atsushi NAGASAKI  Nobuyoshi KOMURO  Shiro SAKATA  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E95-B No:11
      Page(s):
    3545-3555

    We herein propose a MAC protocol for the smart antenna network, which applies pulse/tone exchange prior to the RTS/CTS handshake process. RTS frame collisions are drastically reduced with little additional overhead due to pulse/tone exchange in the proposed protocol. In addition, the number of exposed nodes is reduced by using smart antennas. Furthermore, since the occurrence of the deafness problem can be identified by pulse/tone exchange failure, retransmission is conducted using a fixed contention window value. Therefore, the wastage of wireless resources due to the deafness problem is reduced. As a result, the network throughput can be effectively improved compared with that for previous protocols. Simulation results demonstrate the validity and effectiveness of the proposed protocol.

  • Properties and Effective Extensions of Local Similarity-Based Pixel Value Restoration for Impulse Noise Removal

    Go TANAKA  Noriaki SUETAKE  Eiji UCHINO  

     
    PAPER-Image Processing

      Vol:
    E95-A No:11
      Page(s):
    2023-2031

    In this paper, impulse noise removal for digital images is handled. It is well-known that switching-type processing is effective for the impulse noise removal. In the process, noise-corrupted pixels are first detected, and then, filtering is applied to the detected pixels. This switching process prevents distorting original signals. A noise detector is of course important in the process, a filter for pixel value restoration is also important to obtain excellent results. The authors have proposed a local similarity-based filter (LSF). It utilizes local similarity in a digital image and its capability against restoration of orderly regions has shown in the previous paper. In this paper, first, further experiments are carried out and properties of the LSF are revealed. Although LSF is inferior to an existing filter when disorderly regions are processed and evaluated by the peak signal-to-noise ratio, its outputs are subjectively adequate even in the case. If noise positions are correctly detected, capability of the LSF is guaranteed. On the other hand, some errors may occur in actual noise detection. In that case, LSF sometimes fails to restoration. After properties are examined, we propose two effective extensions to the LSF. First one is for computational cost reduction and another is for color image processing. The original LSF is very time consuming, and in this paper, computational cost reduction is realized introducing a search area. Second proposal is the vector LSF (VLSF) for color images. Although color images can be processed using a filter, which is for monochrome images, to each color component, it sometimes causes color drift. Hence vector processing has been investigated so far. However, existing vector filters do not excel in preservation of orderly pattern although color drift is suppressed. Our proposed VLSF is superior both in orderly pattern preservation and color drift suppression. Effectiveness of the proposed extensions to LSF is verified through experiments.

  • A Ring-VCO-Based Injection-Locked Frequency Multiplier with Novel Pulse Generation Technique in 65 nm CMOS

    Sangyeop LEE  Norifumi KANEMARU  Sho IKEDA  Tatsuya KAMIMURA  Satoru TANOI  Hiroyuki ITO  Noboru ISHIHARA  Kazuya MASU  

     
    PAPER

      Vol:
    E95-C No:10
      Page(s):
    1589-1597

    This paper proposes a low-phase-noise ring-VCO-based frequency multiplier with a new subharmonic direct injection locking technique that only uses a time-delay cell and four MOS transistors. Since the proposed technique behaves as an exclusive OR and can double the reference signal frequency, it increases phase correction points and achieves low phase noise characteristic across the wide output frequency range. The frequency multiplier was fabricated by using 65 nm Si CMOS process. Measured 1-MHz-offset phase noise at 6.34 GHz with reference signals of 528 MHz was -119 dBc/Hz.

  • Accurate Image Expansion Method Using Range Points Based Ellipse Fitting for UWB Imaging Radar

    Yoriaki ABE  Shouhei KIDERA  Tetsuo KIRIMOTO  

     
    PAPER-Sensing

      Vol:
    E95-B No:7
      Page(s):
    2424-2432

    Ultra-wideband (UWB) pulse radars have a definite advantage in high-range resolution imaging, and are suitable for short-range measurements, particularly at disaster sites or security scenes where optical sensors are rarely suitable because of dust or strong backlighting. Although we have already proposed an accurate imaging algorithm called Range Points Migration (RPM), its reconstructible area is too small to identify the shape of an object if it is far from the radar and the size of the aperture is inadequate. To resolve this problem, this paper proposes a novel image expansion method based on ellipse extrapolation; it enhances extrapolation accuracy by deriving direct estimates of the observed range points distributed in the data space. Numerical validation shows that the proposed method accurately extrapolates part of the target boundary, even if an extremely small region of the target boundary is obtained by RPM.

  • A Pulse-Generator-Free Hybrid Latch Based Flip-Flop (PHLFF)

    Xiayu LI  Song JIA  Limin LIU  Yuan WANG  

     
    BRIEF PAPER-Electronic Circuits

      Vol:
    E95-C No:6
      Page(s):
    1125-1127

    A novel hybrid latch based flip-flop scheme is introduced in this paper. A pulse generator is eliminated to simplify clock distribution and save power. It also achieves high speed by shortening the critical data path. In addition, it avoids output node glitches which exist in conventional hybrid latch based flip-flops. HSPICE simulation results revealed that the proposed PHLFF performs best among referenced schemes. It can reduce 47.5% power dissipation, 16.5% clock-to-output latency and 56.4% PDP, as compared to conventional HLFF.

  • A 580 fs-Resolution Time-to-Digital Converter Utilizing Differential Pulse-Shrinking Buffer Ring in 0.18 µm CMOS Technology

    Tetsuya IIZUKA  Satoshi MIURA  Ryota YAMAMOTO  Yutaka CHIBA  Shunichi KUBO  Kunihiro ASADA  

     
    PAPER

      Vol:
    E95-C No:4
      Page(s):
    661-667

    This paper proposes a sub-ps resolution TDC utilizing a differential pulse-shrinking buffer ring. This scheme uses two differentially-operated pulse-shrinking inverters and the TDC resolution is finely controlled by the transistor size ratio between them. The proposed TDC realizes 9 bit, 580 fs resolution in a 0.18 µm CMOS technology with 0.04 mm2 area, and achieves DNL and INL of +0.8/-0.8LSB and +4.3/-4.0LSB, respectively, without linearity calibration. A power dissipation at 1.5 MS/s ranges from 10.8 to 12.6 mW depending on the input time intervals.

  • A Dual-Conduction Class-C VCO for a Low Supply Voltage

    Kenichi OKADA  You NOMIYAMA  Rui MURAKAMI  Akira MATSUZAWA  

     
    PAPER

      Vol:
    E95-A No:2
      Page(s):
    506-514

    This paper proposes a dual-conduction class-C VCO for ultra-low supply voltages. Two cross-coupled NMOS pairs with different bias points are employed. These NMOS pairs realize an impulse-like current waveform to improve the phase noise in the low supply conditions. The proposed VCO was implemented in a standard 0.18 µm CMOS technology, which oscillates at a carrier frequency of 4.5 GHz with a 0.2-V supply voltage. The measured phase noise is -104 dBc/Hz@1 MHz-offset with a power consumption of 114 µW, and the FoM is -187 dBc/Hz.

  • Low Pass Filter-Less Pulse Width Controlled PLL Using Time to Soft Thermometer Code Converter Open Access

    Toru NAKURA  Kunihiro ASADA  

     
    PAPER-Integrated Electronics

      Vol:
    E95-C No:2
      Page(s):
    297-302

    This paper demonstrates a pulse width controlled PLL without using an LPF. A pulse width controlled oscillator accepts the PFD output where its pulse width controls the oscillation frequency. In the pulse width controlled oscillator, the input pulse width is converted into soft thermometer code through a time to soft thermometer code converter and the code controls the ring oscillator frequency. By using this scheme, our PLL realizes LPF-less as well as quantization noise free operation. The prototype chip achieves 60 µm 20 µm layout area using 65 nm CMOS technology along with 1.73 ps rms jitter while consuming 2.81 mW under a 1.2 V supply with 3.125 GHz output frequency.

  • Joint Blind Estimation of Channel Length and Noise Variance in OFDM Systems

    Bin SHENG  Pengcheng ZHU  Xiaohu YOU  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:12
      Page(s):
    3614-3617

    The information of channel impulse response (CIR) length and noise variance play an important role in blind identification and equalization of wireless multipath channels. In orthogonal frequency division multiplexing (OFDM) systems, multipath fading channels introduce interference between adjacent symbols which can be prevented by inserting a cyclic prefix (CP) before each symbol. In this letter, we find that the interference power in the cyclic prefix (CP) interval and its variation can be used to estimate the CIR length and noise variance jointly and blindly.

  • 24-GHz CW Radar with Beam-Switched Area Coverage for Outdoor Intruder Detection

    Mitsutoshi MORINAGA  Toshiyuki NAGASAKU  Hiroshi SHINODA  Hiroshi KONDOH  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E94-C No:11
      Page(s):
    1773-1778

    A 24-GHz continuous wave (CW) radar with three vertically switched beam antennas for monitoring different range segments has been newly proposed and developed as a means to detect intruders in a fan-shaped ground area with 90 degs. in azimuth and over 10 m in range. This radar can detect moving targets and measure their positions from a tampering-proof height of about 5 m by taking advantage of a two-frequency-CW modulation technique and monopulse scheme used to achieve the wide azimuth coverage. The radar module consists of microstrip-patch planar antennas and monolithic microwave integrated circuits (MMICs), which are placed on the opposite side of a single metal plate to attain compact size and lower cost. An experimental radar successfully detected a human intruder with a position accuracy of 50 cm when moving at 1.4 m/s.

  • Angle Measurement Method for Two Targets within an Antenna Beamwidth Using Two Receivers

    Kentaro ISODA  Teruyuki HARA  

     
    PAPER

      Vol:
    E94-B No:11
      Page(s):
    2969-2977

    A monopulse angle measurement method is often utilized to measure a target angle. However, this method cannot measure correct angles for multiple targets which cannot be distinguished by range, Doppler frequency and beamwidth. When the number of targets which cannot be distinguished by these parameters is restricted to two, a method which can measure two targets angles has been proposed. However, an approximation is utilized with this method, so that measured angles have errors even though the signal-to-noise ratio is infinite. Another method which can simultaneously measure azimuths and elevations for only two targets has also been proposed. However, this conventional method requires four receivers, and is therefore difficult to apply when there is a hard ware limitation. In this paper, we propose a method to measure azimuths and elevations of two targets by using two receivers and a time division system. A pairing problem has occurred due to the time division angle measurement with this method, so we also propose an algorithm to solve this pairing problem. We finally verify the proposed method by a numerical simulation and experimentation. The results show that the angles of two targets can be measured by our proposed method by using two receivers.

  • PCA-Based Detection Algorithm of Moving Target Buried in Clutter in Doppler Frequency Domain

    Muhammad WAQAS  Shouhei KIDERA  Tetsuo KIRIMOTO  

     
    LETTER-Sensing

      Vol:
    E94-B No:11
      Page(s):
    3190-3194

    This letter proposes a novel technique for detecting a target signal buried in clutter using principal component analysis (PCA) for pulse-Doppler radar systems. The conventional detection algorithm is based on the fast Fourier transform-constant false alarm rate (FFT-CFAR) approaches. However, the detection task becomes extremely difficult when the Doppler spectrum of the target is completely buried in the spectrum of clutter. To enhance the detection probability in the above situations, the proposed method employs the PCA algorithm, which decomposes the target and clutter signals into uncorrelated components. The performances of the proposed method and the conventional FFT-CFAR based detection method are evaluated in terms of the receiver operating characteristics (ROC) for various signal-to-clutter ratio (SCR) cases. The results of numerical simulations show that the proposed method significantly enhances the detection probability compared with that obtained using the conventional FFT-CFAR method, especially for lower SCR situations.

  • A 0.18 µm CMOS 12 Gb/s 10-PAM Serial Link Transmitter

    Bongsub SONG  Kwangsoo KIM  Jinwook BURM  

     
    PAPER-Electronic Circuits

      Vol:
    E94-C No:11
      Page(s):
    1787-1793

    A 12 Gb/s 10-level pulse amplitude modulation (PAM) serial-link transmitter was implemented using a 0.18 µm CMOS process. The proposed 10-PAM transmitter achieves a channel efficiency of 4 bit/symbol by dual-mode amplitude modulations using 10 differential-mode levels and 3 common-mode levels. The measured maximum data-rate was 12 Gb/s over 0.7-m cable and 2-cm printed circuit board (PCB) traces. The entire transmitter consumes 432 mW such that the figure of merit of the transmitter is 36 pJ/bit. The present work demonstrates the greater channel efficiency of 4 bit/symbol than the currently reported multi-level PAM transmitters.

  • A 0.25-µm Si-Ge Fully Integrated Pulse Transmitter with On-Chip Loop Antenna Array towards Beam-Formability for Millimeter-Wave Active Imaging

    Nguyen Ngoc MAI KHANH  Masahiro SASAKI  Kunihiro ASADA  

     
    PAPER-Microwave and Millimeter-Wave Antennas

      Vol:
    E94-C No:10
      Page(s):
    1626-1633

    This paper presents a 100–120-GHz pulse transmitter chip with a 5424 on-chip loop antenna array for the purpose of beam-formability in portable millimeter-wave (mm-wave) active imaging applications. We present a new idea for silicon-based mm-wave pulse beam-forming by using voltage-varied CMOS inverter chain. This 4-mm4-mm transmitter chip is designed and fabricated in a 2.5-V 0.25-µm 4-metal-layer Si-Ge Bi-CMOS process. The 30-µm30-µm loop antenna located on the top-metal layer operates as an coil in an integrated mm-wave pulse generator. Each of on-chip pulse generators employing under-damped/over-damped conditions to produce mm-wave pulses includes an R-L-C circuit, a bipolar junction transistor (BJT) operated as a switch and a CMOS inverter chain circuit for shaping the rising edge of the input clock. Simulation results by ADS 2009 and HSPICE show that loop antenna' inductance and resistance at 80–120-GHz are 51 pH and 3 Ω, respectively. A simulation performance of an integrated 136 loop antenna array illustrates the variation of maximum radiation angles depending on different phase values between array's elements. By using an mm-wave power meter, a 90–140-GHz standard horn antenna and a Schottky diode detector, several measured radiation patterns of this loop antenna array chip are achieved. From the measurement result, we demonstrate the possibility of an integrated mm-wave pulse generator for the purpose of beam-forming by changing power supplies of inverter chains.

  • Prerake Combining-Based Transmit Diversity UWB Systems with Pulse Amplitude and Position Modulation

    Sangchoon KIM  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:10
      Page(s):
    2903-2907

    In this letter, a prerake combining scheme for signal detection in ultra-wideband (UWB) multiple input single output (MISO) systems with a hybrid pulse amplitude and position modulation (PAPM) is analytically examined. For a UWB MISO system, the analytical BER performance of a prerake combining scheme with PAPM is presented in a log-normal multipath fading channel. The analytical BERs are observed to match well the simulated results for the set of parameters chosen. The prerake diversity combining UWB systems, which can significantly reduce the complexity of the receiver side compared to the rake diversity systems, improve the error performance as the number of transmit antennas increases.

101-120hit(405hit)