The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] PULSE(405hit)

21-40hit(405hit)

  • Parameters Estimation of Impulse Noise for Channel Coded Systems over Fading Channels

    Chun-Yin CHEN  Mao-Ching CHIU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2021/01/18
      Vol:
    E104-B No:7
      Page(s):
    903-912

    In this paper, we propose a robust parameters estimation algorithm for channel coded systems based on the low-density parity-check (LDPC) code over fading channels with impulse noise. The estimated parameters are then used to generate bit log-likelihood ratios (LLRs) for a soft-inputLDPC decoder. The expectation-maximization (EM) algorithm is used to estimate the parameters, including the channel gain and the parameters of the Bernoulli-Gaussian (B-G) impulse noise model. The parameters can be estimated accurately and the average number of iterations of the proposed algorithm is acceptable. Simulation results show that over a wide range of impulse noise power, the proposed algorithm approaches the optimal performance under different Rician channel factors and even under Middleton class-A (M-CA) impulse noise models.

  • A High-Speed PWM-Modulated Transceiver Network for Closed-Loop Channel Topology

    Kyongsu LEE  Jae-Yoon SIM  

     
    BRIEF PAPER

      Pubricized:
    2020/12/18
      Vol:
    E104-C No:7
      Page(s):
    350-354

    This paper proposes a pulse-width modulated (PWM) signaling[1] to send clock and data over a pair of channels for in-vehicle network where a closed chain of point-to-point (P2P) interconnection between electronic control units (ECU) has been established. To improve detection speed and margin of proposed receiver, we also proposed a novel clock and data recovery (CDR) scheme with 0.5 unit-interval (UI) tuning range and a PWM generator utilizing 10 equally-spaced phases. The feasibility of proposed system has been proved by successfully detecting 1.25 Gb/s data delivered via 3 ECUs and inter-channels in 180 nm CMOS technology. Compared to previous study, the proposed system achieved better efficiency in terms of power, cost, and reliability.

  • A Scheme of Reversible Data Hiding for the Encryption-Then-Compression System

    Masaaki FUJIYOSHI  Ruifeng LI  Hitoshi KIYA  

     
    PAPER

      Pubricized:
    2020/10/21
      Vol:
    E104-D No:1
      Page(s):
    43-50

    This paper proposes an encryption-then-compression (EtC) system-friendly data hiding scheme for images, where an EtC system compresses images after they are encrypted. The EtC system divides an image into non-overlapping blocks and applies four block-based processes independently and randomly to the image for visual encryption of the image. The proposed scheme hides data to a plain, i.e., unencrypted image and the scheme can take hidden data out from the image encrypted by the EtC system. Furthermore, the scheme serves reversible data hiding, so it can perfectly recover the unmarked image from the marked image whereas the scheme once distorts unmarked image for hiding data to the image. The proposed scheme copes with the three of four processes in the EtC system, namely, block permutation, rotation/flipping of blocks, and inverting brightness in blocks, whereas the conventional schemes for the system do not cope with the last one. In addition, these conventional schemes have to identify the encrypted image so that image-dependent side information can be used to extract embedded data and to restore the unmarked image, but the proposed scheme does not need such identification. Moreover, whereas the data hiding process must know the block size of encryption in conventional schemes, the proposed scheme needs no prior knowledge of the block size for encryption. Experimental results show the effectiveness of the proposed scheme.

  • Pulse Coding Controlled Switching Converter that Generates Notch Frequency to Suit Noise Spectrum

    Yifei SUN  Yasunori KOBORI  Anna KUWANA  Haruo KOBAYASHI  

     
    PAPER-Energy in Electronics Communications

      Pubricized:
    2020/05/20
      Vol:
    E103-B No:11
      Page(s):
    1331-1340

    This paper proposes a noise reduction technology for a specific frequency band that uses the pulse coding controlled method to automatically set the notch frequency in DC-DC switching converters of communication equipment. For reducing the power levels at the frequency and its harmonics in the switching converter, we often use a frequency-modulated clock. This paper investigates a technology that prevents modulated clock frequency noise from spreading into protected frequency bands; this proposed noise reduction technology does not distribute the switching noise into some specified frequency bands. The notch in the spectrum of the switching pulses is created by the Pulse Width Coding (PWC) method. In communication devices, the noise in the receiving signal band must be as small as possible. The notch frequency is automatically set to the frequency of the received signal by adjusting the clock frequency using the equation Fn = (P+0.5)Fck. Here Fn is the notch frequency, Fck is the clock frequency, and P is a positive integer that determines the noise spectrum location. Therefore, simply be setting the notch frequency to the received signal frequency can suppress the noise present. We confirm with simulations that the proposed technique is effective for noise reduction and notch generation. Also we implement a method of automatic switching between two receiving channels. The conversion voltage ratio in the pulse width coding method switching converter is analyzed and full automatic notch frequency generation is realized. Experiments on a prototype circuit confirm notch frequency generation.

  • Analysis of Pulse Responses by Dispersion Medium with Periodically Conducting Strips

    Ryosuke OZAKI  Tomohiro KAGAWA  Tsuneki YAMASAKI  

     
    BRIEF PAPER

      Pubricized:
    2020/05/14
      Vol:
    E103-C No:11
      Page(s):
    613-616

    In this paper, we analyzed the pulse responses of dispersion medium with periodically conducting strips by using a fast inversion Laplace transform (FILT) method combined with point matching method (PMM) for both the TM and TE cases. Specifically, we investigated the influence of the width and number of the conducting strips on the pulse response and distribution of the electric field.

  • Transient Characteristics on Super-Steep Subthreshold Slope “PN-Body Tied SOI-FET” — Simulation and Pulse Measurement — Open Access

    Takayuki MORI  Jiro IDA  Hiroki ENDO  

     
    PAPER-Semiconductor Materials and Devices

      Pubricized:
    2020/04/23
      Vol:
    E103-C No:10
      Page(s):
    533-542

    In this study, the transient characteristics on the super-steep subthreshold slope (SS) of a PN-body tied (PNBT) silicon-on-insulator field-effect transistor (SOI-FET) were investigated using technology computer-aided design and pulse measurements. Carrier charging effects were observed on the super-steep SS PNBT SOI-FET. It was found that the turn-on delay time decreased to nearly zero when the gate overdrive-voltage was set to 0.1-0.15 V. Additionally, optimizing the gate width improved the turn-on delay. This has positive implications for the low speed problems of this device. However, long-term leakage current flows on turn-off. The carrier lifetime affects the leakage current, and the device parameters must be optimized to realize both a high on/off ratio and high-speed operation.

  • 0.3 V 15-GHz Band VCO ICs with Novel Transformer-Based Harmonic Tuned Tanks in 45-nm SOI CMOS

    Xiao XU  Tsuyoshi SUGIURA  Toshihiko YOSHIMASU  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2020/04/10
      Vol:
    E103-C No:10
      Page(s):
    417-425

    This paper presents two ultra-low voltage and high performance VCO ICs with two novel transformer-based harmonic tuned tanks. The first proposed harmonic tuned tank effectively shapes the pseudo-square drain-node voltage waveform for close-in phase noise reduction. To compensate the voltage drop caused by the transformer, an improved second tank is proposed. It not only has tuned harmonic impedance but also provides a voltage gain to enlarge the output voltage swing over supply voltage limitation. The VCO with second tank exhibits over 3 dB better phase noise performance in 1/f2 region among all tuning range. The two VCO ICs are designed, fabricated and measured on wafer in 45-nm SOI CMOS technology. With only 0.3 V supply voltage, the proposed two VCO ICs exhibit best phase noise of -123.3 and -127.2 dBc/Hz at 10 MHz offset and related FoMs of -191.7 and -192.2 dBc/Hz, respectively. The frequency tuning ranges of them are from 14.05 to 15.14 GHz and from 14.23 to 15.68 GHz, respectively.

  • Recent Progress on Design Method of Microwave Power Amplifier and Applications for Microwave Heating Open Access

    Toshio ISHIZAKI  Takayuki MATSUMURO  

     
    INVITED PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2020/03/19
      Vol:
    E103-C No:10
      Page(s):
    404-410

    Recently, GaN devices are often adopted in microwave power amplifiers to improve the performances. And many new design methods of microwave power amplifier were proposed. As a result, a high-efficiency and super compact microwave signal source has become easily available. It opens up the way for new microwave heating systems. In this paper, the recent progress on design methods of microwave power amplifier and the applications for microwave heating are described. In the first, a device model of GaN transistor is explained. An equivalent thermal model is introduced into the electrical non-linear equivalent device model. In the second, an active load-pull (ALP) measurement system to design a high-efficiency power amplifier is explained. The principle of the conventional closed-loop ALP system is explained. To avoid the risk of oscillation for the closed-loop ALP system, novel ALP systems are proposed. In the third, a microwave heating system is explained. The heating system monitors the reflection wave. Then, the frequency of the signal source and the phase difference between antennas are controlled to minimize the reflection wave. Absorption efficiency of more than 90% was obtained by the control of frequency and phase. In the last part, applications for a medical instrument is described.

  • Improved Neighborhood Based Switching Filter for Protecting the Thin Curves in Arbitrary Direction in Color Images

    ChangCheng WU  Min WANG  JunJie WANG  WeiMing LUO  JiaFeng HUA  XiTao CHEN  Wei GENG  Yu LU  Wei SUN  

     
    PAPER-Data Engineering, Web Information Systems

      Pubricized:
    2020/06/03
      Vol:
    E103-D No:9
      Page(s):
    1939-1948

    Although the classical vector median filter (VMF) has been widely used to suppress the impulse noise in the color image, many thin color curve pixels aligned in arbitrary directions are usually removed out as impulse noise. This serious problem can be solved by the proposed method that can protect the thin curves in arbitrary direction in color image and remove out the impulse noise at the same time. Firstly, samples in the 3x3 filter window are considered to preliminarily detect whether the center pixel is corrupted by impulse noise or not. Then, samples outside a 5x5 filter window are conditionally and partly considered to accurately distinguish the impulse noise and the noise-free pixel. At last, based on the previous outputs, samples on the processed positions in a 3x3 filter window are chosen as the samples of VMF operation to suppress the impulse noise. Extensive experimental results indicate that the proposed algorithm can be used to remove the impulse noise of color image while protecting the thin curves in arbitrary directions.

  • Wide Band Human Body Communication Technology for Wearable and Implantable Robot Control Open Access

    Jianqing WANG  

     
    INVITED PAPER

      Pubricized:
    2019/12/09
      Vol:
    E103-B No:6
      Page(s):
    628-636

    This paper reviews our developed wide band human body communication technology for wearable and implantable robot control. The wearable and implantable robots are assumed to be controlled by myoelectric signals and operate according to the operator's will. The signal transmission for wearable robot control was shown to be mainly realized by electrostatic coupling, and the signal transmission for implantable robot control was shown to be mainly determined by the lossy frequency-dependent dielectric properties of human body. Based on these basic observations on signal transmission mechanisms, we developed a 10-50MHz band impulse radio transceiver based on human body communication technology, and applied it for wireless control of a robotic hand using myoelectric signals in the first time. In addition, we also examined its applicability to implantable robot control, and evaluated the communication performance of implant signal transmission using a living swine. These experimental results showed that the proposed technology is well suited for detection and transmission of biological signals for wearable and implantable robot control.

  • Combining Parallel Adaptive Filtering and Wavelet Threshold Denoising for Photoplethysmography-Based Pulse Rate Monitoring during Intensive Physical Exercise

    Chunting WAN  Dongyi CHEN  Juan YANG  Miao HUANG  

     
    PAPER-Human-computer Interaction

      Pubricized:
    2019/12/03
      Vol:
    E103-D No:3
      Page(s):
    612-620

    Real-time pulse rate (PR) monitoring based on photoplethysmography (PPG) has been drawn much attention in recent years. However, PPG signal detected under movement is easily affected by random noises, especially motion artifacts (MA), affecting the accuracy of PR estimation. In this paper, a parallel method structure is proposed, which effectively combines wavelet threshold denoising with recursive least squares (RLS) adaptive filtering to remove interference signals, and uses spectral peak tracking algorithm to estimate real-time PR. Furthermore, we propose a parallel structure RLS adaptive filtering to increase the amplitude of spectral peak associated with PR for PR estimation. This method is evaluated by using the PPG datasets of the 2015 IEEE Signal Processing Cup. Experimental results on the 12 training datasets during subjects' walking or running show that the average absolute error (AAE) is 1.08 beats per minute (BPM) and standard deviation (SD) is 1.45 BPM. In addition, the AAE of PR on the 10 testing datasets during subjects' fast running accompanied with wrist movements can reach 2.90 BPM. Furthermore, the results indicate that the proposed approach keeps high estimation accuracy of PPG signal even with strong MA.

  • Accelerating Outdoor UWB — Domestic Regulation Transition and Standardization within IEEE 802.15

    Huan-Bang LI  Kenichi TAKIZAWA  Fumihide KOJIMA  

     
    INVITED PAPER

      Vol:
    E103-A No:1
      Page(s):
    269-277

    Because of its high throughput potentiality on short-range communications and inherent superiority of high precision on ranging and localization, ultra-wideband (UWB) technology has been attracting attention continuously in research and development (R&D) as well as in commercialization. The first domestic regulation admitting indoor UWB in Japan was released by the Ministry of Internal Affairs and Communications (MIC) in 2006. Since then, several revisions have been made in conjunction with UWB commercial penetration, emerging new trends of industrial demands, and coexistence evaluation with other wireless systems. However, it was not until May 2019 that MIC released a new revision to admit outdoor UWB. Meanwhile, the IEEE 802 LAN/MAN Standards Committee has been developing several UWB related standards or amendments accordingly for supporting different use cases. At the time when this paper is submitted, a new amendment known as IEEE 802.15.4z is undergoing drafting procedure which is expected to enhance ranging ability for impulse radio UWB (IR-UWB). In this paper, we first review the domestic UWB regulation and some of its revisions to get a picture of the domestic regulation transition from indoor to outdoor. We also foresee some anticipating changes in future revisions. Then, we overview several published IEEE 802 standards or amendments that are related to IR-UWB. Some features of IEEE 802.15.4z in drafting are also extracted from open materials. Finally, we show with our recent research results that time bias internal a transceiver becomes important for increasing localization accuracy.

  • Impulse Noise Removal of Digital Image Considering Local Line Structure

    Shi BAO  Go TANAKA  

     
    LETTER-Image

      Vol:
    E102-A No:12
      Page(s):
    1915-1919

    For the impulse noise removal from a digital image, most of existing methods cannot repair line structures in an input image. In this letter, a method which considers the local line structure is proposed. In order to judge the direction of the line structure, adjacent lines are considered. The effectiveness of the proposed filter is shown by experiments.

  • Performance Improvement of the Catastrophic CPM Scheme with New Split-Merged MNSED

    Richard Hsin-Hsyong YANG  Chia-Kun LEE  Shiunn-Jang CHERN  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Pubricized:
    2019/05/16
      Vol:
    E102-B No:11
      Page(s):
    2091-2103

    Continuous phase modulation (CPM) is a very attractive digital modulation scheme, with constant envelope feature and high efficiency in meeting the power and bandwidth requirements. CPM signals with pairs of input sequences that differ in an infinite number of positions and map into pairs of transmitted signals with finite Euclidean distance (ED) are called catastrophic. In the CPM scheme, data sequences that have the catastrophic property are called the catastrophic sequences; they are periodic difference data patterns. The catastrophic sequences are usually with shorter length of the merger. The corresponding minimum normalized squared ED (MNSED) is smaller and below the distance bound. Two important CPM schemes, viz., LREC and LRC schemes, are known to be catastrophic for most cases; they have poor overall power and bandwidth performance. In the literatures, it has been shown that the probability of generating such catastrophic sequences are negligible, therefore, the asymptotic error performance (AEP) of those well-known catastrophic CPM schemes evaluated with the corresponding MNSED, over AWGN channels, might be too negative or pessimistic. To deal with this problem in AWGN channel, this paper presents a new split-merged MNSED and provide criteria to explore which conventional catastrophic CPM scheme could increase the length of mergers with split-merged non-periodic events, effectively. For comparison, we investigate the exact power and bandwidth performance for LREC and LRC CPM for the same bandwidth occupancy. Computer simulation results verify that the AEP evaluating with the split-merged MNSED could achieve up to 3dB gain over the conventional approach.

  • Amplification Characteristics of a Phase-Sensitive Amplifier of a Chirped Optical Pulse

    Kyo INOUE  

     
    PAPER-Lasers, Quantum Electronics

      Pubricized:
    2019/06/07
      Vol:
    E102-C No:11
      Page(s):
    818-824

    Phase-sensitive amplification (PSA) has unique properties, such as the quantum-limited noise figure of 0 dB and the phase clamping effect. This study investigates PSA characteristics when a chirped pulse is incident. The signal gain, the output waveform, and the noise figure for an optical pulse having been chirped through chromatic dispersion or self-phase modulation before amplification are analyzed. The results indicate that the amplification properties for a chirped pulse are different from those of a non-chirped pulse, such that the signal gain is small, the waveform is distorted, and the noise figure is degraded.

  • Consideration of Relationship between Human Preference and Pulse Wave Derived from Brain Activity

    Mami KITABATA  Yota NIIGAKI  Yuukou HORITA  

     
    LETTER

      Vol:
    E102-A No:9
      Page(s):
    1250-1253

    In this paper, we consider the relationship between human preference and brain activity, especially pulse wave information using NIRS. First of all, we extracted the information of on pulse wave from the Hb changes signal of NIRS. By using the FFT to the Hb signals, we found out the 2-nd peak of power spectrum that is implying the frequency information of the pulse wave. The frequency deviation of 2-nd peak may have some information about the change of brain activity, it is associated with the human preference for viewing the significant image content.

  • A Pulse-Tail-Feedback LC-VCO with 700Hz Flicker Noise Corner and -195dBc FoM Open Access

    Aravind Tharayil NARAYANAN  Kenichi OKADA  

     
    PAPER-Electronic Circuits

      Vol:
    E102-C No:7
      Page(s):
    595-606

    This paper proposes a pulse-tail-feedback VCO, in which the tail transistor is driven using pulse-shaped voltage signals with rail-to-rail swing. The proposed pulse-tail-feedback (PTFB) VCO relies on reducing the current conduction period of the tail transistor and operating the tail transistors in triode region for reducing the flicker and thermal noise from the active elements. Mathematical analysis and circuit level simulations of the phase noise mechanism in the proposed PTFB-VCO is also presented in this paper for validating the effectiveness of the proposed technique. A prototype LC-VCO with the proposed PTFB technique is fabricated in a standard 180nm CMOS. Laboratory measurement shows a power consumption of 1.35mW from a 1.2V supply at 4.6GHz. The proposed PTFB-VCO achieves a flicker corner of 700Hz, which enables the VCO to maintain a fairly constant figure-of-merit (FoM) of -195dB within a wide offset frequency range of 1kHz-10MHz.

  • Rapid Single-Flux-Quantum Truncated Multiplier Based on Bit-Level Processing Open Access

    Nobutaka KITO  Ryota ODAKA  Kazuyoshi TAKAGI  

     
    BRIEF PAPER-Superconducting Electronics

      Vol:
    E102-C No:7
      Page(s):
    607-611

    A rapid single-flux-quantum (RSFQ) truncated multiplier based on bit-level processing is proposed. In the multiplier, two operands are transformed to two serialized patterns of bits (pulses), and the multiplication is carried out by processing those bits. The result is obtained by counting bits. By calculating in bit-level, the proposed multiplier can be implemented in small area. The gate level design of the multiplier is shown. The layout of the 4-bit multiplier was also designed.

  • Pulse Responses from Periodically Arrayed Dispersion Media with an Air Region

    Ryosuke OZAKI  Tsuneki YAMASAKI  

     
    PAPER-Electromagnetic Theory

      Vol:
    E102-C No:6
      Page(s):
    479-486

    In this paper, we propose a new technique for the transient scattering problem of periodically arrayed dispersion media for the TE case by using a combination of the Fourier series expansion method (FSEM) and the fast inversion Laplace transform (FILT) method, and analyze the pulse response for various widths of the dispersion media. As a result, we clarified the influence of the dispersion media with an air region on the resulting waveform.

  • Design of Integrated High Voltage Pulse Generator for Medical Ultrasound Transmitters

    Deng-Fong LU  Chin HSIA  Jian-Chiun LIOU  Yen-Chung HUANG  

     
    PAPER

      Pubricized:
    2018/12/28
      Vol:
    E102-B No:6
      Page(s):
    1121-1127

    Design of an equivalent slew-rate monolithic pulse generator using bipolar-CMOS-DMOS (BCD) technology for medical ultrasound transmitters is presented in this paper. The pulse generator employs a floating capacitive coupling level-shifter architecture to produce a high-voltage (Vpp=80V) output. The performance of equivalent slew-rate in the rising and falling edge is achieved by carefully choosing the value of coupling capacitors and the size of the final stage high-voltage MOSFETs of the pulse generator. The measured output pulses show the rising and falling time of 8.6nsec and 8.5nsec, respectively with second harmonic distortion down to -40dBc, indicating the designed pulse generator can be used for advanced ultrasonic harmonic imaging systems.

21-40hit(405hit)