The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] PULSE(405hit)

341-360hit(405hit)

  • Photorefractive Combining and Shaping Properties of Amplitude-Modulated Optical Signals by Two-Wave Mixing in Cu-KNSBN Crystal

    Joo-Uk UM  Kwon-Yeon LEE  Nam KIM  Han-Kyu PARK  Sang-Sam CHOI  

     
    PAPER-Opto-Electronics

      Vol:
    E82-C No:5
      Page(s):
    758-765

    We propose and describe a new configuration for splitting and combining operations of high-speed amplitude-modulated optical signals between the two interacting beams by using two-wave mixing in photorefractive Cu-doped (K0.5 Na0.5)0.2 (Sr0.61 Ba0.39)0.9 Nb2O6 (Cu-KNSBN) crystal. These operations are simultaneously achieved by changing the intensity ratio of the two incident beams. We also apply this scheme to a photorefractive pulse shaping in the time domain that consists of two amplitude-modulated beams that are coupled automatically through two-beam interactions in the crystal. Some preliminary experimental results are presented and discussed.

  • Improvement of the Accuracy in Attenuation Constant Estimation Using the Cross-Spectral Technique

    Manabu FUKUSHIMA  Takatoshi OKUNO  Hirofumi YANAGAWA  Ken'iti KIDO  

     
    PAPER

      Vol:
    E82-A No:4
      Page(s):
    626-633

    This paper proposes a method of improving the accuracy of the attenuation constant estimate obtained by using the cross-spectral technique. In the cross-spectral technique, the envelope of the estimated impulse response is deformed due to the use of a time window. As a result, the estimated impulse response decays more rapidly than the real impulse response does, and the attenuation constant obtained by the estimated impulse response becomes larger than the real value. This paper first describes how the attenuation constant changes in the process of impulse response estimation. Next, we propose a method of improving the accuracy of the estimation. The effect of the proposed method is confirmed by computer simulation.

  • An Analog-Digital Merged Neural Circuit Using Pulse Width Modulation Technique

    Takashi MORIE  Jun FUNAKOSHI  Makoto NAGATA  Atsushi IWATA  

     
    PAPER

      Vol:
    E82-A No:2
      Page(s):
    356-363

    This paper presents a neural circuit using PWM technique based on an analog-digital merged circuit architecture. Some new PWM circuit techniques are proposed. A bipolar-weighted summation circuit is described which attains 8-bit precision in SPICE simulation at 5 V supply voltage by compensating parasitic capacitance effects. A high performance differential-type latch comparator which can discriminate 1 mV difference at 100 MHz in SPICE simulation is also described. Next, we present a prototype chip fabricated using a 0.6µm CMOS process. The measurement results demonstrate that the overall precision in the weighted summation and the sigmoidal transformation is 5 bits. A neural network has been constructed using the prototype chips, and the experimental results for realizing the XOR function have successfully verified the basic neural operation.

  • Theoretical Transient Amplification Characteristics of Optical Waveguide Amplifiers Using Erbium Doped Garnet Crystalline Thin-Film

    Rakkappan BALASUBRAMANIAN  Yasumitsu MIYAZAKI  

     
    PAPER-Opto-Electronics

      Vol:
    E81-C No:12
      Page(s):
    1926-1935

    A thin-film waveguide amplifier based on Er-doped Garnet crystals is proposed and transient amplification characteristics, studied numerically using time-dependent rate equations and mode evolution equations, are presented. The potential of the amplifier for integration with active devices operating at the present communication wavelength of 1. 53 µm band is revealed. Pump wavelengths in the visible and near infrared lead to excited state absorption, and will affect the gain characteristics, which has been included in the present study. Steady state response of the Er doped Garnet crystal waveguide amplifiers has been analyzed in order to optimize the gain characteristics, which are further used in the dynamic response analysis. Accordingly, it is shown that a high gain of 20 dB/cm is possible to be achieved. Experimentally determined parameters such as waveguide loss, absorption and emission cross-sections have been used for the simulations. Comparisons of the present simulation results with our earlier reported results of quasi-two-level laser model and other reported results are also presented. Understanding the dynamic characteristics of the integrated optic waveguide amplifiers is necessary when the input signal is modulated in various formats. Because of the slower gain dynamics of the Er doped Garnet amplifier medium, it is shown that the longer signal input pulses are observed to be distorted upon amplification. Very short single pulse of nano- and pico-second duration are amplified without change in the pulse shape. Input pulses of square, Gaussian and Lorentzian shapes have been considered for the numerical examples.

  • A Vehicular Driving Assistant System Using Spread Spectrum Techniques

    Ari WIDODO  Takaaki HASEGAWA  

     
    PAPER

      Vol:
    E81-A No:11
      Page(s):
    2334-2340

    In the ITS (Intelligent Transport Systems), it is an essential condition (mixed environment) that vehicles that have communication equipment and vehicles that do not have it simultaneously run in the same road. In this paper, a vehicular driving assistant system that is applicable to the mixed environment is proposed. The proposed system uses spread spectrum techniques and consists of several new systems such as a PN code assignment system, new vehicle position systems, and a vehicle map update system. In the proposed system, the wireless broadcast CDMA is used for inter-vehicle communications. This paper also shows preexaminations of the proposed system by using an autonomous traffic flow simulator including inter-vehicle communications. It is shown that the traffic safety can be improved by using inter-vehicle communications.

  • Performance Analysis of Optical Frequency-Domain Encoding CDMA Enhancement of Frequency Division Multiplexing

    Katsuhiro KAMAKURA  Yoshinobu GAMACHI  Hideyuki UEHARA  Tomoaki OHTSUKI  Iwao SASASE  

     
    PAPER-Optical Communication

      Vol:
    E81-B No:9
      Page(s):
    1749-1757

    Optical frequency division multiplexing (FDM) technique has the advantage of fully orthogonal transmissions. However, FDM system permits only a small number of FDM channels despite of a great effort, such as frequency stabilization. On the other hand, frequency-domain encoding code-division multiple-access (FE-CDMA) has been widely studied as a type of optical CDMA. In this system, encoding is done in the frequency domain of an ultrashort light pulse spread by optically Fourier transform. However, FE-CDMA accommodates very limited number of simultaneous users, though this scheme uses a vast optical bandwidth. It is attractive to consider the combination of both advantages of FDM and FE-CDMA. We propose FE-CDMA enhancement of FDM (FDM/FE-CDMA). Since in FDM/FE-CDMA the total bandwidth is partitioned into M optical bands and each band is encoded by the code with code length of Nc, we expect nearly perfect orthogonal transmissions. In addition, since the creation of FDM bands is realized by a passive filter, the optical frequency is precisely controlled and the optical frequency allocation is flexible. We derive the bit error rate (BER) as a function of the number of simultaneous users, bit rate, and the utilization efficiency of total bandwidth. We compare the performance of FDM/FE-CDMA with that of the conventional FE-CDMA in terms of the number of simultaneous users on condition that each chip width is constant. As a result, we show that FDM/FE-CDMA can support the larger number of simultaneous users than the conventional FE-CDMA at a given bit error rate under the same total bandwidth.

  • Dependence of Elastic Modulus on Inner Pressure of Tube Wall Estimated from Measured Pulse Wave Velocity

    Masahiko TAKANO  Hiroshi KANAI  Nozomu HOSHIMIYA  Noriyoshi CHUBACHI  

     
    PAPER-Acoustics

      Vol:
    E81-A No:5
      Page(s):
    889-894

    We have proposed a non-invasive method for diagnosis of the early stage of atherosclerosis, namely, the detection of small vibrations on the aortic wall near the heart by using ultrasound diagnostic equipment. It is, however, necessary to confirm the effectiveness of such measurement of the pulse wave velocity for quantitative evaluation of the local characteristics of atherosclerosis. It is well known that Young's modulus of a tube wall, estimated from measured pulse wave velocity, depends on inner pressure because of the non-linear relationship between the inner pressure and the change of volume in the tube. The inner pressure, however, changes during the period of one heartbeat. In this experimental study, we found for the first time that Young's modulus of the tube wall, estimated from the measured pulse wave velocity, depends not only on the diastolic pressure but also on the pulse pressure and the pressure gradient of the systolic period.

  • Design of a 2-ns Cycle Time 72-kb ECL-CMOS SRAM Macro

    Kenichi OHHATA  Takeshi KUSUNOKI  Hiroaki NAMBU  Kazuo KANETANI  Keiichi HIGETA  Kunihiko YAMAGUCHI  Noriyuki HOMMA  

     
    PAPER-Integrated Electronics

      Vol:
    E81-C No:3
      Page(s):
    447-454

    We describe the design of ECL write circuits and a CMOS memory cell in an ECL-CMOS SRAM to achieve ultra-fast cycle time. Factors determining the write cycle are reduced by several novel circuit techniques and by optimizing the design of the write circuits and CMOS memory cell, thereby, enabling ultra-fast cycle time. Key techniques are a bit line overdriving, the use of an overshoot suppressing emitter follower and a WPG with a replica memory cell delayer. The 72-kb ECL-CMOS SRAM macro through which these techniques were implemented was fabricated using 0. 3-µm BiCMOS technology. The RAM macro achieves a short cycle time of 2 ns without sacrificing stable memory cell operation. These techniques thus provide SRAMs with a shorter cycle time in the cache memories of high performance computer systems.

  • High-Repetition Frequency Pulse Generation at over 40 GHz Using Mode-Locked Lasers Integrated with Electroabsorption Modulators

    Kenji SATO  Isamu KOTAKA  Yasuhiro KONDO  Mitsuo YAMAMOTO  

     
    PAPER

      Vol:
    E81-C No:2
      Page(s):
    146-150

    This paper describes short pulse generation at over 40 GHz using monolithic mode-locked lasers integrated with electroabsorption modulators. The electroabsorption modulator using strained-InGaAsP multiquantum wells provides a pulse shortening gate at a high-repetition frequency. Pulse generation around 4 ps has been realized at a repetition frequency of 43. 5 GHz. Pulse compression using a 1. 3 µm single mode fiber is performed and a 0. 87 ps pulse is obtained.

  • Generation of Low Timing Jitter, Sub-Picosecond Optical Pulses Using a Gain-Switched DFB-LD with CW Light Injection and a Nonlinear Optical Loop Mirror

    Hiroshi OHTA  Seiji NOGIWA  Haruo CHIBA  

     
    LETTER

      Vol:
    E81-C No:2
      Page(s):
    166-168

    The timing jitter of the optical pulse from a gain-switched laser diode is reduced by CW light injection. The reduction ratio of the timing jitter is 5. 5. The pulse width was compressed by a nonlinear optical loop mirror to a pedestal-free optical pulse with a pulse width of 420 fs.

  • Femtosecond Technology in Japan

    Hiroyoshi YAJIMA  Takeshi KAMIYA  

     
    INVITED PAPER-Femtosecond Strategy

      Vol:
    E81-C No:2
      Page(s):
    95-102

    This paper reviews the prospects for "femtosecond technology" which will provide an innovative and fundamentally new industrial technology based on ultrafast electronics and quantum optics occurring in the femtosecond time domain. The outline of the femtosecond technology project sponsored by the Ministry of International Trade and Industry (MITI) is also reviewed.

  • Intracavity Dispersion Effects of a Regeneratively and Harmonically FM Mode-Locked Erbium-Doped Fiber Laser

    Eiji YOSHIDA  Kohichi TAMURA  Masataka NAKAZAWA  

     
    PAPER

      Vol:
    E81-C No:2
      Page(s):
    189-194

    The dependence of the output characteristics of a regeneratively and harmonically FM mode-locked erbium-doped fiber laser on intracavity dispersion have been investigated by changing the group velocity dispersion (GVD) of the fiber. It is shown that a stable pulse train can be obtained only when the GVD of the cavity is anomalous in the presence of self-phase modulation (SPM). The shortest pulse obtained was 2. 0 ps at a repetition rate of 10 GHz.

  • Very-High-Speed and Low Driving-Voltage Modulator Modules for a Short Optical Pulse Generation

    Koichi WAKITA  Kaoru YOSHINO  Akira HIRANO  Susumu KONDO  Yoshio NOGUCHI  

     
    PAPER

      Vol:
    E81-C No:2
      Page(s):
    175-179

    Optimization of InGaAs/InAlAs multiple quantum well structures for high-speed and low-driving modulation, as well as polarization insensitivity and low chirp, was investigated as a function of well thickness and strain magnitude. As a result, very short optical pulses with 4-6 ps was obtained using a low driving-voltage (<2. 0 Vpp) electroabsorption modulator module operating at a 40-GHz large signal modulation. Small chirp operation for low insertion loss (<8 dB from fiber-to-fiber) with prebias was also demonstrated and the product of the pulse width and the spectral width was estimated to be 0. 39 for a 5 ps pulse width that is nearly transform-limited.

  • Passively Mode-Locked Micromechanically-Tunable Semiconductor Lasers

    Yoshitada KATAGIRI  Atsushi TAKADA  Shigendo NISHI  Hiroshi ABE  Yuji UENISHI  Shinji NAGAOKA  

     
    PAPER

      Vol:
    E81-C No:2
      Page(s):
    151-159

    We propose a mechanically tunable passively mode-locked semiconductor laser with a high repetition rate using a simple configuration with a moving mirror located very close to a laser facet. This scheme is demonstrated for the first time by a novel micromechanical laser consisting of an InGaAsP/InP multisegment laser with a monolithic moving micro-mirror driven by an electrostatic comb structure. The main advantage of this laser is the capability of generating high-quality mode-locked pulses stabilized by a phase-locked loop (PLL) with low residual phase noise in a wide repetition-rate tuning range. This paper describes the basic concept and tuning performances utilizing the micromechanical passively mode-locked laser in 22-GHz fundamental mode-locking and in its second-harmonic mode-locking.

  • Stretched-Pulse Generation and Propagation

    David J. JONES  Hermann A. HAUS  Lynn E. NELSON  Erich P. IPPEN  

     
    INVITED PAPER-Mode-locked Fiber Lasers

      Vol:
    E81-C No:2
      Page(s):
    180-188

    In this paper we review the stretched-pulse principle and discuss its inherent advantages for ultrashort pulse generation and transmission. An analytic theory of the stretched-pulse fiber laser is presented and shown to be in good agreement with experimental results. An extension of the stretched-pulse theory is applied to both fiber lasers and dispersion-allocated soliton transmission and then compared to numerical results. We also discuss the design and operation of an environmentally stable stretched-pulse fiber laser.

  • Design Theory of Ultra-Short Pulse Generation from Actively Mode-Locked Fiber Lasers

    Hideyuki SOTOBAYASHI  Kazuro KIKUCHI  

     
    PAPER

      Vol:
    E81-C No:2
      Page(s):
    201-207

    This paper analyzes pulse characteristics of actively mode-locked fiber lasers by including the group-velocity dispersion and the Kerr nonlinearity of the fiber, both of which have not been taken into account in the conventional theory of mode locking. We show that chirped sech pulses are generated from nonlinear and dispersive fiber lasers. By considering the stability of the laser, we also derive design rules for the generation of ultra-short pulses.

  • Electroabsorption Modulators for High Speed Ultrashort Pulse Generation and Processing

    Martin GUY  Stanislav CHERNIKOV  Roy TAYLOR  

     
    PAPER

      Vol:
    E81-C No:2
      Page(s):
    169-174

    Electroabsorption modulators are high speed devices that are rapidly being commercialised and finding applications in a number of areas, particularly in telecommunications. A CW laser diode modulated by an electroabsorption modulator constitutes an extremely stable, robust and simple source of high quality, high repetition rate ultrashort optical pulses. In this paper we describe the capabilities and limitations of such pulse sources, and present nonlinear pulse compression and manipulation techniques that allow one to overcome these limitations. We also present the design of a new class of comb-like dispersion-profiled fibre compressor. Such a compressor is easily fabricated from commercially available fibres and represents a simple yet powerful way of extending the range of pulse durations available. As the electroabsorption modulator is essentially a high speed switch it is also applicable to optical processing problems, and we report the application of such a device to demultiplexing.

  • The Shortest KLM Ti:Sapphire Laser Pulse Started by a Semiconductor Saturable Absorber Mirror (SESAM)

    Dirk H. SUTTER  Isabella D. JUNG  Nicolai MATUSCHEK  Francois MORIER-GENOUD  Franz X. KARTNER  Ursula KELLER  Volker SCHEUER  Markus TILSCH  Theo TSCHUDI  

     
    LETTER

      Vol:
    E81-C No:2
      Page(s):
    123-124

    This paper summarizes our recent efforts in modelocking Ti:sapphire lasers with semiconductor saturable absorber mirrors (SESAMs). We present the shortest optical pulses ever generated directly from a laser. The modelocking build-up time (T BU) of 60 µs is, to our knowledge, the shortest reported for a passively modelocked KLM laser to date.

  • Highly Stable, Actively Mode-Locked Er-Doped Fiber Laser Utilizing Relaxation Oscillation as Detuning Monitor

    Hidehiko TAKARA  Satoki KAWANISHI  Masatoshi SARUWATARI  

     
    PAPER

      Vol:
    E81-C No:2
      Page(s):
    213-220

    We investigate the relaxation oscillation characteristics of an actively mode-locked fiber laser and a novel stabilizing method of the laser theoretically and experimentally. The stabilizing method controls cavity length to suppress the rf power of the relaxation oscillation frequency of the laser output, and can directly monitor the stability of the laser to ensure the most stable operation. With this method, the rf power ratio between mode-locking frequency and the background noise can be kept to more than 70 dB, and highly stable transform-limited pulse generation is achieved. Bit-error-free operation at 6. 3 GHz over 10 hours is successfully demonstrated. The stability of the center wavelength of the laser output and the required accuracy of cavity control for high-speed laser operation are also discussed.

  • A Tunable Femtosecond Modelocked Semiconductor Laser for Applications in OTDM-Systems

    Reinhold LUDWIG  Stefan DIEZ  Armin EHRHARDT  Lothar KULLER  Wilhelm PIEPER  Hans G. WEBER  

     
    PAPER

      Vol:
    E81-C No:2
      Page(s):
    140-145

    In this paper, we describe the properties of an external cavity modelocked semiconductor laser with a tunability of wavelength, pulse width and repetition rate. This modelocked laser generates optical pulses with pulse widths down to 180 fs and with repetition rates up to 14 GHz in a 120 nm wavelength range near 1. 55 µm or 1. 3 µm. The generated pulses are close to the transform limit and are therefore suitable for very high speed communication systems. In addition to the tunability, this pulse source is a compact and mechanically stable device. We report on two applications of this pulse source in optical time division multiplexing experiments. In the first example the modelocked laser is used as an all-optical clock recovery. In the second example the modelocked laser was used to characterize an interferometric switch by pump-probe experiments.

341-360hit(405hit)