The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] RP(993hit)

781-800hit(993hit)

  • Improved Alternative Sequential Filter-Edge Detector

    Minsuk HONG  Jinsung OH  Sang-Hui PARK  

     
    LETTER-Image

      Vol:
    E84-A No:5
      Page(s):
    1352-1356

    In this paper, we present improved alternative sequential filter-edge detector using generalized directional morphological filters. Based on the properties of effective noise removal and detail preservation of the generalized directional morphological filters, we apply these filters to edge detection of noisy images. The performance of the edge detection in the presence of mixed noise is evaluated. Simulations show that edge detection method using generalized directional morphological filters can also improve the performance.

  • Influence of Wavelength Detuning on Device Performance of Electroabsorption Modulator Integrated Distributed Feedback Lasers Based on Identical Epitaxial Layer Approach

    Chang-Zheng SUN  Bing XIONG  Guo-Peng WEN  Yi LUO  Tong-Ning LI  Yoshiaki NAKANO  

     
    PAPER-Optical Active Devices and Modules

      Vol:
    E84-C No:5
      Page(s):
    656-659

    The effect of wavelength detuning on the device performance of identical-epitaxial-layer (IEL) electroabsorption (EA) modulator integrated distributed feedback (DFB) lasers is studied in detail. Based on the lasing behavior of integrated devices with different amount of wavelength detuning and the photocurrent spectra under different reverse biases, the optimal wavelength detuning is experimentally determined to be around 30-40 nm for our IEL integrated devices. By adopting gain-coupled DFB laser section, integrated devices with optimal wavelength detuning have demonstrated excellent single mode performances. The extinction ratio is measured to be greater than 15 dB at -3 V, and the modulation bandwidth is around 8 GHz.

  • Asymmetric Transmission Spectrum of a Long-Period Fiber Grating and Its Removal Using a Beam Scanning Method

    Tae-Jung EOM  Young-Jae KIM  Youngjoo CHUNG  Won-Taek HAN  Un-Chul PAEK  Byeong Ha LEE  

     
    PAPER-Optical Fibers and Cables

      Vol:
    E84-B No:5
      Page(s):
    1241-1246

    In an ideal fiber grating having a uniform refractive index modulation, the reflection or the transmission spectrum is symmetric with equal amount of side lobes on both sides of the resonant wavelength of the fiber grating. It is observed that a long-period fiber grating made by a non-uniform UV laser beam through a uniform amplitude mask has an asymmetric transmission spectrum. The asymmetric characteristic is explained with Mach-Zehnder effect in the long-period fiber grating. The non-uniform UV laser beam makes also a non-uniform index modulation along the fiber core. Therefore, a beam coupled to a cladding mode at a section of the grating can be re-coupled to the core mode after passing a certain distance. The re-coupled beam makes Mach-Zehnder-like interference with the un-coupled core mode. However, it is presented that the asymmetric phenomenon can be overcome by scanning the UV laser beam along the fiber over the mask. The beam scanning method is able to suffer the same fluence of the UV laser beam on the fiber. Finally, a linearly chirped long-period fiber grating was made using the non-uniform UV laser beam. Due to the asymmetricity the chirping effect was not clearly observed. It is also presented that the beam scanning method could remove the asymmetric problem and recover the typical spectrum of the linearly chirped fiber grating.

  • Influence of Wavelength Detuning on Device Performance of Electroabsorption Modulator Integrated Distributed Feedback Lasers Based on Identical Epitaxial Layer Approach

    Chang-Zheng SUN  Bing XIONG  Guo-Peng WEN  Yi LUO  Tong-Ning LI  Yoshiaki NAKANO  

     
    PAPER-Optical Active Devices and Modules

      Vol:
    E84-B No:5
      Page(s):
    1282-1285

    The effect of wavelength detuning on the device performance of identical-epitaxial-layer (IEL) electroabsorption (EA) modulator integrated distributed feedback (DFB) lasers is studied in detail. Based on the lasing behavior of integrated devices with different amount of wavelength detuning and the photocurrent spectra under different reverse biases, the optimal wavelength detuning is experimentally determined to be around 30-40 nm for our IEL integrated devices. By adopting gain-coupled DFB laser section, integrated devices with optimal wavelength detuning have demonstrated excellent single mode performances. The extinction ratio is measured to be greater than 15 dB at -3 V, and the modulation bandwidth is around 8 GHz.

  • Asymmetric Transmission Spectrum of a Long-Period Fiber Grating and Its Removal Using a Beam Scanning Method

    Tae-Jung EOM  Young-Jae KIM  Youngjoo CHUNG  Won-Taek HAN  Un-Chul PAEK  Byeong Ha LEE  

     
    PAPER-Optical Fibers and Cables

      Vol:
    E84-C No:5
      Page(s):
    615-620

    In an ideal fiber grating having a uniform refractive index modulation, the reflection or the transmission spectrum is symmetric with equal amount of side lobes on both sides of the resonant wavelength of the fiber grating. It is observed that a long-period fiber grating made by a non-uniform UV laser beam through a uniform amplitude mask has an asymmetric transmission spectrum. The asymmetric characteristic is explained with Mach-Zehnder effect in the long-period fiber grating. The non-uniform UV laser beam makes also a non-uniform index modulation along the fiber core. Therefore, a beam coupled to a cladding mode at a section of the grating can be re-coupled to the core mode after passing a certain distance. The re-coupled beam makes Mach-Zehnder-like interference with the un-coupled core mode. However, it is presented that the asymmetric phenomenon can be overcome by scanning the UV laser beam along the fiber over the mask. The beam scanning method is able to suffer the same fluence of the UV laser beam on the fiber. Finally, a linearly chirped long-period fiber grating was made using the non-uniform UV laser beam. Due to the asymmetricity the chirping effect was not clearly observed. It is also presented that the beam scanning method could remove the asymmetric problem and recover the typical spectrum of the linearly chirped fiber grating.

  • Speckle Reduction for Ultrasonic Images Using Fuzzy Morphology

    Erwin AVIANTO  Masayasu ITO  

     
    PAPER-Image Processing, Image Pattern Recognition

      Vol:
    E84-D No:4
      Page(s):
    502-510

    To develop a smoothing method for speckle reduction is a significant problem, because of the complex ultrasonic characteristics and the obscurity of the tissue image. This paper presents a new method for speckle reduction from medical ultrasonic image by using fuzzy morphological speckle reduction algorithm (FMSR) that preserves resolvable details while removing speckle in order to cope with the ambiguous and obscure ultrasonic images. FMSR creates a cleaned image by recombining the processed residual images with a smoothed version of an original image. Performance of the proposed method has been tested on the phantom and tissue images. The results show that the method effectively reduces the speckle while preserving the resolvable details.

  • Sharp Directivity Function Based on Fourier Series Expansion and Its Directional System Realization with Small Number of Microphones

    Masataka NAKAMURA  Toshitaka YAMATO  Katsuhito KOUNO  Atsuyuki TAKASHIMA  

     
    PAPER

      Vol:
    E84-A No:4
      Page(s):
    975-983

    In order that speech recognition system may have a high recognition rate in a noisy environment, a wide-band sharp directional microphone system is required at the input for securing a high S/N ratio. The authors have already reported the realization of a wide-band uni-directional microphone system by three-microphone integration method. In this paper, we intend to describe the derivation of a sharp directivity function and the realization of its microphone system. First, setting the shape of the characteristic function to bring a sharp directional pattern and then expanding it into the Fourier series, we derive a new directivity function. Next, on the basis of this directivity function, we will present a sharp directional microphone system with only three non-directional microphones and the subsequent analog signal processing. And also, the directional pattern acquired by the proposed method and the effect of the dispersion in the sensitivity of the constituent microphones on the directivity are discussed in detail.

  • Delay Analysis for CBR Traffic in Multimedia Enterprise Network

    Katsuyoshi IIDA  Tetsuya TAKINE  Hideki SUNAHARA  Yuji OIE  

     
    PAPER-Network

      Vol:
    E84-B No:4
      Page(s):
    1041-1052

    We examine delay performance of packets from constant bit rate (CBR) traffic whose delay is affected by non-real-time traffic. The delay performance is analyzed by solving the Σ Di/G/1 queue with vacations. Our analysis allows heterogeneous service time and heterogeneous interarrival time. Thus, we can get the impact of packet length of a stream on the delay time of other streams. We then give various numerical results for enterprise multimedia networks, which include voice, video and data communication services. From our quantitative evaluation, we conclude that packet length of video traffic has large influence on the delay time of voice traffic while voice traffic gives a little impact on the delay time of video traffic.

  • Boundary Based Parametric Polygon Morphing

    Ding-Horng CHEN  Yung-Nien SUN  

     
    PAPER-Computer Graphics

      Vol:
    E84-D No:4
      Page(s):
    511-520

    A simple and an efficient algorithm for polygon morphing is proposed in this paper. We adopt the parametric curve representation based on Fourier parameter estimation to transfer the traditional morphing process in spatial domain to a process in the parametric space instead. The principles are to express the polygon as the union of matching segments that are described by the estimated Fourier parameters. We have also designed a data resampling method that effectively controls the shape morphing according to the corresponding curvature values. Intermediate objects in-between the source and target polygons are then constructed based on the interpolation of Fourier parameters of the two polygons. Fourier parameters of the resampled polygons can be obtained efficiently by using the fast Fourier transform (FFT) algorithm. The experimental results show that the appearances of the morphed objects are superior to the ones obtained by the methods available.

  • A New Formulation for Discrete Box Splines Reducing Computational Cost and Its Evaluation

    Takeshi ASAHI  Koichi ICHIGE  Rokuya ISHII  

     
    PAPER-Image

      Vol:
    E84-A No:3
      Page(s):
    884-892

    This paper presents a fast algorithm for calculating box splines sampled at regular intervals. This algorithm is based on the representation by directional summations, while splines are often represented by convolutions. The summation-based representation leads less computational complexity: the proposed algorithm requires fewer additions and much fewer multiplications than the algorithm based on convolutions. The proposed algorithm is evaluated in the sense of the number of additions and multiplications for three- and four-directional box splines to see how much those operations are reduced.

  • A Current-Mode Folding/Interpolating CMOS A/D Converter with Multiplied Folding Amplifiers

    Hyung Hoon KIM  Kwang Sub YOON  

     
    LETTER

      Vol:
    E84-A No:2
      Page(s):
    563-567

    A current-mode folding and interpolating analog to digital converter (ADC) architecture with multiplied folding amplifiers is proposed in this paper. A current-mode multiplied folding amplifier is employed not only to reduce the number of reference current source, but also to decrease a power dissipation within the ADC. The proposed ADC for 12 bit was designed by a 0.65 µm n-well CMOS single poly/double metal process. The simulated result shows a differential nonlinearity (DNL) of 0.5LSB, an integral nonlinearity (INL) of 1.0LSB, 20 Ms/s of the data conversion rate, and the power dissipation of 180 mW with a power supply of 5 V.

  • A Characterization of Some Linear Cellular Automata

    Marcel CRASMARU  

     
    PAPER

      Vol:
    E84-D No:1
      Page(s):
    15-20

    In this paper, we propose a mathematical model for one-dimensional finite linear cellular automata and show connections between our model and the classical one. We then demonstrate, through some examples, that our model is a useful tool for analyzing one-dimensional finite linear cellular automata. We also extend this model to the D-dimensional case and give an algebraic characterization for it.

  • A Theory of Demonstrating Program Result-Correctness with Cryptographic Applications

    Kouichi SAKURAI  

     
    INVITED SURVEY PAPER

      Vol:
    E84-D No:1
      Page(s):
    4-14

    We formalize a model of "demonstration of program result-correctness," and investigate how to prove this fact against possible adversaries, which naturally extends Blum's theory of program checking by adding zero-knowledge requirements. The zero-knowledge requirements are universal for yes and no instances alike.

  • Index Interpolation: A Subsequence Matching Algorithm Supporting Moving Average Transform of Arbitrary Order in Time-Series Databases

    Woong-Kee LOH  Sang-Wook KIM  Kyu-Young WHANG  

     
    PAPER-Databases

      Vol:
    E84-D No:1
      Page(s):
    76-86

    In this paper we propose a subsequence matching algorithm that supports moving average transform of arbitrary order in time-series databases. Moving average transform reduces the effect of noise and has been used in many areas such as econometrics since it is useful in finding the overall trends. The proposed algorithm extends the existing subsequence matching algorithm proposed by Faloutsos et al. (SUB94 in short). If we applied the algorithm without any extension, we would have to generate an index for each moving average order and would have serious storage and CPU time overhead. In this paper we tackle the problem using the notion of index interpolation. Index interpolation is defined as a searching method that uses one or more indexes generated for a few selected cases and performs searching for all the cases satisfying some criteria. The proposed algorithm, which is based on index interpolation, can use only one index for a pre-selected moving average order k and performs subsequence matching for arbitrary order m ( k). We prove that the proposed algorithm causes no false dismissal. The proposed algorithm can also use more than one index to improve search performance. The algorithm works better with smaller selectivities. For selectivities less than 10-2, the degradation of search performance compared with the fully-indexed case--which is equivalent to SUB94--is no more than 33.0% when one index is used, and 17.2% when two indexes are used. Since the queries with smaller selectivities are much more frequent in general database applications, the proposed algorithm is suitable for practical situations.

  • Principle of Superposition for Realizing Dexterous Pinching Motions of a Pair of Robot Fingers with Soft-Tips

    Suguru ARIMOTO  Pham Thuc Anh NGUYEN  

     
    INVITED PAPER

      Vol:
    E84-A No:1
      Page(s):
    39-47

    This paper is concerned with analysis of nonlinear dynamics under geometric constraints that express pinching motions of a pair of multi-degrees of freedom fingers with soft tips. The dynamics of such a pair of soft fingers can be expressed by a set of complicated nonlinear differential equations with algebraic constraints, even if the motion is constrained in a plane. However, it is shown from the passivity analysis that dynamic stable grasping (pinching) can be realized by means of a feedforward input of desired internal force with coefficients composed of elements of Jacobian matrices plus a feedback of the difference between moments of rotation exerted at both sides of the object. It is shown in the case of a pair of 2 d.o.f. and 3 d.o.f. fingers (corresponding to a pair of thumb and index fingers) that a principle of linear superposition is applicable to design of additional feedback signals for controlling simultaneously the posture (rotational angle) and position of the mass center of the object, though the dynamics are nonlinear. A sufficient condition for applicability of the principle of superposition is discussed and given as a condition for unique stationary resolution of the overall motion to elementary motions (stable grasping, rotation control, x and y coordinates control). The principle implies that a skilled motion can be resolved into some of elementary motions which human can learn separately and independently.

  • Design of a Low Power Consumption Pulse-Shaping 1:4 Interpolation FIR Filter for W-CDMA Applications

    Keun-Jang RYOO  Jong-Wha CHONG  

     
    LETTER-Analog Circuit Design

      Vol:
    E83-A No:12
      Page(s):
    2627-2630

    This paper presents the design and simulation of a power efficient 1:4 interpolation FIR filter with partitioned look Up Table (LUT) structure. Using the symmetry of the filter coefficients and the contents of the LUT, the area of the proposed filter is minimized. The two filters share the partitioned LUT and activate the LUT selectively to realize the low power operation. Experimental results suggest that the proposed filter reduces the power consumption by 25% and simultaneously reduces the gate area by 7% compared to the previously proposed single-architecture dual-channel filter.

  • Imaging of Strongly Scattering Targets Based on Signal Processing Algorithms

    Markus TESTORF  Andres MORALES-PORRAS  Michael FIDDY  

     
    PAPER-SAR Interferometry and Signal Processing

      Vol:
    E83-C No:12
      Page(s):
    1905-1911

    A signal processing approach is discussed which has the potential for imaging strongly scattering objects from a series of scattering experiments. The method is based on a linear spectral estimation technique to replace the filtered backpropagation for limited discrete data and a subsequent nonlinear signal processing step to remove the contribution of multiple scattering my means of homomorphic filtering. Details of this approach are discussed and illustrated by applying the imaging algorithm to both simulated and real data.

  • Design, Modeling, and Control of a Novel Six D.O.F Positioning System Using Magnetic Levitation

    KwangSuk JUNG  YoonSu BAEK  

     
    PAPER-Electromechanical Devices and Components

      Vol:
    E83-C No:12
      Page(s):
    1937-1949

    The micro positioning systems using magnetic suspension technique, which is one of precision actuating method, have been suggested. Utilizing the various potentials such as the exclusion of a mechanical friction, they are being applied broadly to multi degrees of freedom (d.o.f) system requesting high accuracy or hybrid system requesting to be controlled position and force simultaneously. This paper presents the entire development procedure of a novel six d.o.f micro positioning system using mag-netic levitation, with a repulsive force mechanism covering the all d.o.f. First, the interactions between magnetic elements are modeled and the system design flow by an optimal location of the elements is given. A kinematic relationship between the measuring instruments and the levitated object is derived, and dynamic characteristics are identified by the narrow gap principles. And the main issues for control are discussed.

  • A Novel Subsurface Radar Using a Short Chirp Signal to Expand the Detection Range

    Yoshiyuki TOMIZAWA  Masanobu HIROSE  Ikuo ARAI  Kazuo TANABE  

     
    PAPER-Sensing

      Vol:
    E83-B No:10
      Page(s):
    2427-2434

    The use of a chirp signal is one of the methods to expand the detection range in subsurface radar. However, the presence of time-sidelobes after a conventional pulse-compression makes the detection range degraded because weak signals from underground objects are covered with a large time-sidelobe due to a ground surface reflection. In this paper, we propose a new pulse compression subsurface radar using a short chirp signal in which the echoes from the ground surface and the object are not overlapped. We show that the short chirp signal can improve the detection ability compared with a conventional chirp signal and examine the influence that the decreases of the signal duration and the compression ratio exert on the detection range. By the new pulse compression subsurface radar, the steel pipes buried down to 5 m in depth can be detected.

  • Pulse Compression Subsurface Radar

    Ikuo ARAI  Yoshiyuki TOMIZAWA  Masanobu HIROSE  

     
    INVITED PAPER

      Vol:
    E83-B No:9
      Page(s):
    1930-1937

    The application of subsurface radar using electromagnetic waves in the VHF band is wide and includes surveying voids under the ground and archaeological prospecting. To achieve a wider application range, the survey depth must be deeper. In this paper, a method of pulse compression using a chirp signal as one of the methods to fulfill this requirement is described, and its advantages and problems are discussed. First, a delay correlation method is proposed as a processing method of pulse compression. It converts RF band chirp signal directly into a pulse. Moreover, the method improves the S/N ratio by over 40 dB compared with conventional pulse radar. Therefore, it has the same detection ability as conventional pulse radar even though it uses less transmitting power. Next, the influences of RF amplifier saturation and underground propagation characteristics on the chirp signal are discussed; both are shown to have little influence on the detection ability of the method.

781-800hit(993hit)