The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] RP(993hit)

661-680hit(993hit)

  • Optimal Temporal Decomposition for Voice Morphing Preserving Δ Cepstrum

    Yoshinao SHIRAKI  

     
    PAPER-Audio/Speech Coding

      Vol:
    E87-A No:3
      Page(s):
    577-583

    We propose Optimal Temporal Decomposition (OTD) of speech for voice morphing preserving Δ cepstrum. OTD is an optimal modification of the original Temporal Decomposition (TD) by B. Atal. It is theoretically shown that OTD can achieve minimal spectral distortion for the TD-based approximation of time-varying LPC parameters. Moreover, by applying OTD to preserving Δ cepstrum, it is also theoretically shown that Δ cepstrum of a target speaker can be reflected to that of a source speaker. In frequency domain interpolation, the Laplacian Spectral Distortion (LSD) measure is introduced to improve the Inverse Function of Integrated Spectrum (IFIS) based non-uniform frequency warping. Experimental results indicate that Δ cepstrum of the OTD-based morphing spectra of a source speaker is mostly equal to that of a target speaker except for a piecewise constant factor and subjective listening tests show that the speech intelligibility of the proposed morphing method is superior to the conventional method.

  • A Fingerprint Matching Algorithm Using Phase-Only Correlation

    Koichi ITO  Hiroshi NAKAJIMA  Koji KOBAYASHI  Takafumi AOKI  Tatsuo HIGUCHI  

     
    PAPER-Digital Signal Processing for Pattern Recognition

      Vol:
    E87-A No:3
      Page(s):
    682-691

    This paper presents an algorithm for fingerprint matching using the Phase-Only Correlation (POC) function. One of the most difficult problems in human identification by fingerprints has been that the matching performance is significantly influenced by fingertip surface condition, which may vary depending on environmental or personal causes. This paper proposes a new fingerprint matching algorithm using phase spectra of fingerprint images. The proposed algorithm is highly robust against fingerprint image degradation due to inadequate fingertip conditions. A set of experiments is carried out using fingerprint images captured by a pressure sensitive fingerprint sensor. The proposed algorithm exhibits efficient identification performance even for difficult fingerprint images that could not be identified by the conventional matching algorithms.

  • A Self-Confirming Engine for Preventing Man-in-the-Middle Attack

    Masataka KANAMORI  Takashi KOBAYASHI  Suguru YAMAGUCHI  

     
    PAPER-Security

      Vol:
    E87-B No:3
      Page(s):
    530-538

    In this paper, we focus on how to correct address mapping violation, in which an attacker rewrites the address mapping table of a victim to perform a Man-in-the-Middle (MITM) attack. We propose a technique for preventing MITM attacks in which a malicious user intercepts and possibly alters the data transmitted between two hosts. MITM attack is hard for legitimate users to notice during their normal communication, because each user believes they are communicating directly. Address mapping violation can occur because of vulnerability of address resolution protocols, Address Resolution Protocol (ARP) in IPv4 and Neighbor Discovery (ND) protocol in IPv6. Accordingly, a good method to prevent MITM attack by address mapping violation is essential for both current and future communications, i.e. wireless networks with roaming users and an interconnected world. Hence, our proposal mainly aims to have high usability in future applications such as embedded devices.

  • A Significant Property of Mapping Parameters for Signal Interpolation Using Fractal Interpolation Functions

    Satoshi UEMURA  Miki HASEYAMA  Hideo KITAJIMA  

     
    LETTER-Digital Signal Processing

      Vol:
    E87-A No:3
      Page(s):
    748-752

    This letter presents a significant property of the mapping parameters that play a central role to represent a given signal in Fractal Interpolation Functions (FIF). Thanks to our theoretical analysis, it is derived that the mapping parameters required to represent a given signal are also applicable to represent the upsampled signal of a given one. Furthermore, the upsampled signal obtained by using the property represents the self-affine property more distinctly than the given signal. Experiments show the validity and usefulness of the significant property.

  • Design and FDTD Simulation of Photonic Crystal k-Vector Superprism

    Takashi MATSUMOTO  Toshihiko BABA  

     
    PAPER

      Vol:
    E87-C No:3
      Page(s):
    393-397

    We theoretically investigated the resolution of the photonic crystal (PC) K-vector superprism, which utilized the wavelength-dependent refraction of light at an angled output end as a narrow band filter at 1.55 µm wavelength range. Similarly to the case of the conventional S-vector prism, we defined the equi-incident-angle curve against the dispersion surface, and calculated the beam collimation, wavelength sensitivity and resolution parameters for light propagation in the PC. We estimated that the resolution of the K-vector prism is the same as or higher than that of the S-vector prism and the PC can be significantly miniaturized. In addition, we clarified the relation of the S-vector prism phenomenon and the position of the output end in the K-vector prism, and different results for the reduced and repeated zone schemes, which are important for the detailed design. We also confirmed that the light propagation simulated by the FDTD method well agreed with the results of the dispersion surface analysis.

  • Symbolic Simulation Heuristics for High-Level Hardware Descriptions Including Uninterpreted Functions

    Kiyoharu HAMAGUCHI  

     
    LETTER

      Vol:
    E87-D No:3
      Page(s):
    637-641

    This letter handles symbolic simulation for high-level hardware design descriptions including uninterpreted functions. Two new heuristics are introduced, which are named "symbolic function table" and "synchronization". In the experiment, the equivalence of a hardware/software codesign was checked up to a given finite number of cycles, which is composed of a behavioral design, that is, a small DSP program written in C, and its register-transfer-level implementation, a VLIW architecture with an assembly program. Our symbolic simulator succeeded in checking the equivalence of the two descriptions which were not tractable without the heuristics.

  • Fabrication of La-Doped YBCO and SrTiO3-Buffered LSAT Thin Films for Ramp-Edge Josephson Junctions on Superconducting Ground Plane

    Seiji ADACHI  Hironori WAKANA  Yoshihiro ISHIMARU  Masahiro HORIBE  Yoshinobu TARUTANI  Keiichi TANABE  

     
    PAPER

      Vol:
    E87-C No:2
      Page(s):
    206-211

    The deposition conditions of Y0.9Ba1.9La0.2Cu3Oy (La-YBCO) and (LaAlO3)0.3-(SrAl0.5Ta0.5O3)0.7 (LSAT) thin films were studied with the aim of fabricating ramp-edge Josephson junctions on a superconducting ground plane. These films were deposited by a magnetron sputtering method and utilized as a base electrode and an insulating layer under the electrode, respectively. YBa2Cu3Oy thick films grown by liquid phase epitaxy (LPE-YBCO) were used for a ground plane. Insertion of a SrTiO3 buffer layer between LSAT and LPE-YBCO significantly improved the flatness of the film surface. La-YBCO films with a flat surface and Tc (zero) of 87K were reproducibly obtained by DC sputtering. We have fabricated ramp-edge Josephson junctions using these films. Resistively and capacitively shunted junction (RCSJ)-like characteristics were observed in them. An Ic spread of 10.2% (at 4.2K, average Ic = 0.5 mA) was obtained for a 1000-junction series-array.

  • A Motion Vector Search Algorithm Based on a Simple Search-Block Interpolation Scheme

    Yankang WANG  Makoto ANDO  Tomohiro TANIKAWA  Kazuhiro YOSHIDA  Jun YAMASHITA  Hideaki KUZUOKA  Michitaka HIROSE  

     
    LETTER-Multimedia Systems

      Vol:
    E87-B No:2
      Page(s):
    384-389

    This paper presents a block-based motion vector search algorithm for video coding based on an interpolation scheme of search blocks. The basic idea of motion vector estimation between frames is to select a block in the previous frame that best matches a block in the current frame by minimizing the difference between them. In most of the search algorithms, however, the best-match block can only be on a pre-defined grid pattern. Although using a pre-defined pattern increases the search efficiency, it may also reduce the search accuracy. To balance the two aspects and to fully utilize the block information, we propose a strategy, which, instead of selecting from pre-defined blocks, searches for a best match interpolated from the pre-defined blocks. Experiment results demonstrate a better accuracy and efficiency of this search method than some commonly-used methods for different kinds of motion.

  • Actuator Using Electrostriction Effect of Fullerenol-Doped Polyurethane Elastomer (PUE) Films

    Jun KYOKANE  Kenji TSUJIMOTO  Yuki YANAGISAWA  Tsutomu UEDA  Masumi FUKUMA  

     
    PAPER-Nano-interface Controlled Electronic Devices

      Vol:
    E87-C No:2
      Page(s):
    136-141

    Polyurethane elastomer (PUE) films similar to polymer gel materials have been found to exhibit the electrostriction effect. We proposed the application their to a moving device such as an actuator without ionic solvent using the electrostriction effect of PUE. The actuators are of monomorph type fabricated by PUE film and metal electrodes evaporated at different thicknesses on the film surface. Because these actuators work at high voltage more than 1 KV, we controlled the molecular structure of the films by doping C60 derivatives (fullerenol) into PUE so that the actuators could operate under a low voltage. In order to clear the bending mechanism of actuators, we measured the space charge of PUE films using the pulsed electroacoustic method.

  • A Novel Contour Description with Expansion Ability Using Extended Fractal Interpolation Functions

    Satoshi UEMURA  Miki HASEYAMA  Hideo KITAJIMA  

     
    PAPER-Image Processing, Image Pattern Recognition

      Vol:
    E87-D No:2
      Page(s):
    453-462

    In this paper, a novel description method of the contour of a shape using extended fractal interpolation functions (EFIFs) is presented. Although the scope of application of traditional FIFs has been limited to cases in which a given signal is represented by a single-valued function, the EFIFs derived by the introduction of a new parameter can describe a multiple-valued signal such as the contour of a shape with a high level of accuracy. Furthermore, the proposed description method possesses the useful property that once a given contour has been modeled by the proposed description method, the shape can be easily expanded at an arbitrary expansion rate. Experimental results show the effectiveness and usefulness of the proposed description method for representing contours.

  • Optical Fiber Bio-Sensor Using Adsorption LB Films

    Kazuhiro KUDO  

     
    LETTER-Nano-interface Controlled Electronic Devices

      Vol:
    E87-C No:2
      Page(s):
    185-187

    An optical fiber biosensor using adsorption LB films has been investigated for the application to the glucose detection in blood. The adsorption LB film containing glucose oxidase (GOD: the enzyme in human body) was deposited on the core portion of optical fiber and the variation of absorption spectra due to the reactions of GOD, glucose, and hemoglobin was measured. The relatively high response time of 60 s and glucose sensitivity as low as 20 mg/dl were obtained. The results demonstrate that the optical fiber bio-sensor using adsorption LB film can be used as a glucose sensor.

  • Multi-Mode Digital IF Downconverter for Software Radio Application

    Shiann-Shiun JENG  Shu-Ming CHANG  Bor-Shuh LAN  

     
    PAPER

      Vol:
    E86-B No:12
      Page(s):
    3498-3512

    The software-defined radio technique translates the traditional hardware radio platform to a flexible software radio platform that can support multiple air interface standards. This work proposes an efficient IF processing architecture based on software-defined radio for 2G GSM/IS-95 and 3G W-CDMA systems. Hardware complexity is estimated by fixed-point simulation. IF processing architecture should be highly flexible and minimally complex. Firstly, a carrier channel is selected from a wide frequency band using a high-resolution numerically controlled oscillator (NCO). Wide-range interpolation/decimation is performed by the cascaded integrator comb (CIC) filter that involves no multiplier nor stores filter coefficients. Both the desired narrowband and the desired wideband signals can be extracted. The look-up table (LUT), based on the distributed arithmetic (DA) algorithm is used to implement the finite impulse response (FIR) filter. Therefore, a small area and high speed can be achieved. The errors caused by truncation, quantization, rounding-off and overflow are predicted using a fixed-point simulation. These predictions will help to evaluate the word-length for VLSI implementation. Finally, ALTERA APEX20KE is used as a target device. One hundred thousand gates are used for the implementation. Thus, the proposed architecture has high processing flexibility and small area.

  • Differential Evaluation of Fixpoints of Non-distributive Functions

    Joonseon AHN  

     
    PAPER-Theory and Models of Software

      Vol:
    E86-D No:12
      Page(s):
    2710-2721

    We present a differential fixpoint computation method for program analyses based on abstract interpretation. An analysis of a program based on abstract interpretation can be expressed using a monotonic increasing function and a fixpoint of the function becomes an analysis result. To compute a fixpoint, the function is applied repeatedly until the results become stable. This brings redundant computation because new results always include the former results. Differential methods try to avoid such redundancy by computing only the increment of each function application. Compared with other differential fixpoint evaluation methods, our method can deal with non-distributive functions which often occur in practical program analyses. To compute increments for non-distributive functions, we adapt an indirect way of using a differential evaluation rule for expressions which form function bodies. We have designed a differential worklist algorithm and applied the algorithm to implement an alias and constant propagation analysis. Experiments show that our method can avoid much redundant computation.

  • Constructing c-Secure CRT Codes Using Polynomials over Finite Fields

    Mira KIM  Junji SHIKATA  Hirofumi MURATANI  Hideki IMAI  

     
    PAPER-Information Security

      Vol:
    E86-A No:12
      Page(s):
    3259-3266

    In this paper, we deal with c-secure codes in a fingerprinting scheme, which encode user ID to be embedded into the contents. If a pirate copy appears, c-secure codes allow the owner of the contents to trace the source of the illegal redistribution under collusion attacks. However, when dealing in practical applications, most past proposed codes are failed to obtain a good efficiency, i.e. their codeword length are too large to be embedded into digital contents. In this paper, we propose a construction method of c-secure CRT codes based on polynomials over finite fields and it is shown that the codeword length in our construction is shorter than that of Muratani's scheme. We compare the codeword length of our construction and that of Muratani's scheme by numerical experiments and present some theoretical results which supports the results obtained by numerical experiments. As a result, we show that our construction is especially efficient in respect to a large size of any coalition c. Furthermore, we discuss the influence of the random error on the traceability and formally define the Weak IDs in respect to our construction.

  • VLSI Module Placement with Pre-Placed Modules and with Consideration of Congestion Using Solution Space Smoothing

    Sheqin DONG  Xianlong HONG  Song CHEN  Xin QI  Ruijie WANG  Jun GU  

     
    PAPER-Place and Routing

      Vol:
    E86-A No:12
      Page(s):
    3136-3147

    Solution space smoothing allows a local search heuristic to escape from a poor, local minimum. In this paper, we propose a technique that can smooth the rugged terrain surface of the solution space of a placement problem. We test the smoothing heuristics for MCNC benchmarks, and for VLSI placement with pre-placed modules and placement with consideration of congestion. Experiment results demonstrated that solution space smoothing is very efficient for VLSI module placement, and it can be applied to all floorplanning representations proposed so far.

  • Complex Form Bandpass Sampling with Offset Frequency Sampling and Quadrature Component Interpolation for Modulated Signals

    Norihiro SATO  Hiroshi SUZUKI  Satoshi SUYAMA  Kazuhiko FUKAWA  

     
    PAPER

      Vol:
    E86-B No:12
      Page(s):
    3513-3520

    This paper proposes complex form BandPass Sampling (BPS) that is suitable for the software radio. This BPS utilizes offset frequency sampling and quadrature component interpolation. Three types of BPS techniques are first reviewed, which shows effectiveness of the proposed BPS technique. The major advantages over the conventional BPS techniques are: i) free from the DC offset that is caused by the leak of the sampling clock harmonics into the received signal, and ii) reduction of alias by the complex number processing in the signal detection. Next, detailed description of the BPS operation shows that it requires real-time interpolation for the time alignment of the sampled quadrature component. Finally, computer simulation shows that the misalignment generates distortion, and that effective interpolation techniques can reduce the distortion level less than -60 dB even for wideband signals.

  • A Low-Power Implementation Scheme of Interpolation FIR Filters Using Distributed Arithmetic

    Sangyun HWANG  Gunhee HAN  Sungho KANG  Jaeseok KIM  

     
    LETTER-Integrated Electronics

      Vol:
    E86-C No:11
      Page(s):
    2346-2350

    This paper presents a low-power implementation scheme of interpolation FIR filters using distributed arithmetic (DA). The key idea of the proposed scheme involves look-up tables generating only nonnegative values. Thus, the proposed scheme can minimize the dynamic power consumption of interpolation FIR filters using DA without additional hardware. When used for implementing a pulse shaping filter for CDMA2000 mobile stations, the proposed filter not only has almost the same hardware complexity as the conventional one; it also has approximately 43% reduced power consumption.

  • A New Protocol for Double Auction Based on Homomorphic Encryption

    Wataru OHKISHIMA  Shigeki GOTO  

     
    PAPER

      Vol:
    E86-D No:11
      Page(s):
    2361-2370

    The auction is a popular way of trading. Despite of the popularity of the auction, only a small number of papers have addressed the protocol which realize the double auction. In this paper, we propose a new method of double auction which improves the algorithm of the existing double auction protocol. Our new method is based on the idea of number comparison which is realized by homomorphic encryption. The new method solves the problem of the privacy of losing bids found in the existing algorithm. The buyers and the sellers can embed a random number in their bidding information by the use of the homomorphic encryption. The players in an auction cannot get anyone else's bidding information. The new method is more efficient than the existing ones. Our new method satisfies the criteria for the auction protocol.

  • A Null Reshaping Scheme of Adaptive Notch Filter for RFI Reduction over CAP-Based VDSL Systems

    Byeong-Sook BAE  Gi-Hong IM  Yoon-Ha JEONG  

     
    PAPER-Transmission Systems and Transmission Equipment

      Vol:
    E86-B No:10
      Page(s):
    2987-2995

    In this paper, a simple adaptive notch filter (ANF) scheme for reducing RFI over CAP/QAM-based VDSL systems is proposed. To alleviate the spectral null caused by notch filtering, a null reshaping scheme is introduced between the normal ANF and the decision feedback equalizer (DFE). The proposed filter scheme can control the width and depth of the null. The shallow and narrow null obtained by null reshaping reduces the loss of signal components and consequently improves the mean square error (MSE) at the output of the equalizer. The proposed null reshaping scheme also enables the infinite impulse response (IIR) type constrained ANF to have a smaller pole contraction factor α. This results in a fast convergence property in RFI frequency estimation with a recursive prediction error (RPE) algorithm. The performance variations of the proposed null reshaping are investigated with varying filter parameters. Compared to the conventional ANF, simulation results show that, at the expense of small system complexity, the proposed structure yields a 2-3 dB MSE gain and a fast convergence property for RFI estimation.

  • Automated Edge Detection by a Fuzzy Morphological Gradient

    Sathit INTAJAG  Kitti PAITHOONWATANAKIJ  

     
    PAPER-Image

      Vol:
    E86-A No:10
      Page(s):
    2678-2689

    Edge detection has been an essential step in image processing, and there has been much work undertaken to date. This paper inspects a fuzzy mathematical morphology in order to reach a higher-level of edge-image processing. The proposed scheme uses a fuzzy morphological gradient to detect object boundaries, when the boundaries are roughly defined as a curve or a surface separating homogeneous regions. The automatic edge detection algorithm consists of two major steps. First, a new version of anisotropic diffusion is proposed for edge detection and image restoration. All improvements of the new version use fuzzy mathematical morphology to preserve the edge accuracy and to restore the images to homogeneity. Second, the fuzzy morphological gradient operation detects the step edges between the homogeneous regions as object boundaries. This operation uses geometrical characteristics contained in the structuring element in order to extract the edge features in the set of edgeness, a set consisting of the quality values of the edge pixels. This set is prepared with fuzzy logic for decision and selection of authentic edge pixels. For experimental results, the proposed method has been tested successfully with both synthetic and real pictures.

661-680hit(993hit)