The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SC(4570hit)

1001-1020hit(4570hit)

  • Accurate Target Extrapolation Method Exploiting Double Scattered Range Points for UWB radar

    Ayumi YAMARYO  Shouhei KIDERA  Tetsuo KIRIMOTO  

     
    BRIEF PAPER-Electromagnetic Theory

      Vol:
    E97-C No:8
      Page(s):
    828-832

    Ultra-wide band (UWB) radar has a great advantage for range resolution, and is suitable for 3-dimensional (3-D) imaging sensor, such as for rescue robots or surveillance systems, where an accurate 3-dimensional measurement, impervious to optical environments, is indispensable. However, in indoor sensing situations, an available aperture size is severely limited by obstacles such as collapsed furniture or rubles. Thus, an estimated region of target image often becomes too small to identify whether it is a human body or other object. To address this issue, we previously proposed the image expansion method based on the ellipse extrapolation, where the fitting space is converted from real space to data space defined by range points to enhance the extrapolation accuracy. Although this method achieves an accurate image expansion for some cases, by exploiting the feature of the efficient imaging method as range points migration (RPM), there are still many cases, where it cannot maintain sufficient extrapolation accuracy because it only employs the single scattered component for imaging. For more accurate extrapolation, this paper extends the above image expansion method by exploiting double-scattered signals between the target and the wall in an indoor environment. The results from numerical simulation validate that the proposed method significantly expands the extrapolated region for multiple elliptical objects, compared with that obtained using only single scattered signal.

  • A 2-Gb/s CMOS SLVS Transmitter with Asymmetric Impedance Calibration for Mobile Interfaces

    Kwang-Hun LEE  Young-Chan JANG  

     
    BRIEF PAPER-Electronic Circuits

      Vol:
    E97-C No:8
      Page(s):
    837-840

    A scalable low voltage signaling (SLVS) transmitter, with asymmetric impedance calibration, is proposed for mobile applications which require low power consumption. The voltage swing of the proposed SLVS transmitter is scalable from 40,mV to 440,mV. The proposed asymmetric impedance calibration asymmetrically controls the pull-up and pull-down drivers for the SLVS transmitter with an impedance of 50,$Omega$. This makes it possible to remove the additional regulator used to calibrate the impedance of an output driver by controlling the swing level of a pre-driver. It also maintains the common mode voltage at the center voltage level of the transmitted signal. The proposed SVLS transmitter is implemented using a 0.18-$mu $m 1-poly 6-metal CMOS process with a 1.2-V supply. The active area and power consumption of the transmitter are $250 imes 123 mu$ m$^{2}$ and 2.9,mW/Gb/s, respectively.

  • Design and Evaluation of Materialized View as a Service for Smart City Services with Large-Scale House Log

    Shintaro YAMAMOTO  Shinsuke MATSUMOTO  Sachio SAIKI  Masahide NAKAMURA  

     
    PAPER

      Vol:
    E97-D No:7
      Page(s):
    1709-1718

    Smart city services are implemented using various data collected from houses and infrastructure within a city. As the volume and variety of the smart city data becomes huge, individual services have suffered from expensive computation effort and large processing time. In order to reduce the effort and time, this paper proposes a concept of Materialized View as a Service (MVaaS). Using the MVaaS, every application can easily and dynamically construct its own materialized view, in which the raw data is converted and stored in a convenient format with appropriate granularity. Thus, once the view is constructed, the application can quickly access necessary data. In this paper, we design a framework of MVaaS specifically for large-scale house log, managed in a smart-city data platform. In the framework, each application first specifies how the raw data should be filtered, grouped and aggregated. For a given data specification, MVaaS dynamically constructs a MapReduce batch program that converts the raw data into a desired view. The batch is then executed on Hadoop, and the resultant view is stored in HBase. We present case studies using house log in a real home network system. We also conduct an experimental evaluation to compare the response time between cases with and without MVaaS.

  • Capacity-Fairness Controllable Scheduling Algorithms for Single-Carrier FDMA

    Takayoshi IWATA  Hiroyuki MIYAZAKI  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:7
      Page(s):
    1474-1482

    Scheduling imposes a trade-off between sum capacity and fairness among users. In some situations, fairness needs to be given the first priority. Therefore, a scheduling algorithm which can flexibly control sum capacity and fairness is desirable. In this paper, assuming the single-carrier frequency division multiple access (SC-FDMA), we propose three scheduling algorithms: modified max-map, proportional fairness (PF)-map, and max-min. The available subcarriers are grouped into a number of subcarrier-blocks each having the same number of subcarriers. The scheduling is done on a subcarrier-block by subcarrier-block basis to take advantage of the channel frequency-selectivity. The same number of non-contiguous subcarrier-blocks is assigned to selected users. The trade-off between sum capacity and fairness is controlled by changing the number of simultaneously scheduling users per time-slot. Capacity, fairness, and peak-to-average power ratio (PAPR) when using the proposed scheduling algorithms are examined by computer simulation.

  • Scan-Based Attack against Trivium Stream Cipher Using Scan Signatures

    Mika FUJISHIRO  Masao YANAGISAWA  Nozomu TOGAWA  

     
    PAPER

      Vol:
    E97-A No:7
      Page(s):
    1444-1451

    Trivium is a synchronous stream cipher using three shift registers. It is designed to have a simple structure and runs at high speed. A scan-based side-channel attack retrieves secret information using scan chains, one of design-for-test techniques. In this paper, a scan-based side-channel attack method against Trivium using scan signatures is proposed. In our method, we reconstruct a previous internal state in Trivium one by one from the internal state just when a ciphertext is generated. When we retrieve the internal state, we focus on a particular 1-bit position in a collection of scan chains and then we can attack Trivium even if the scan chain includes other registers than internal state registers in Trivium. Experimental results show that our proposed method successfully retrieves a plaintext from a ciphertext generated by Trivium.

  • Maximally Permissive Similarity Enforcing Supervisors for Nondeterministic Discrete Event Systems under Event and State Observations

    Katsuyuki KIMURA  Shigemasa TAKAI  

     
    PAPER-Systems and Control

      Vol:
    E97-A No:7
      Page(s):
    1500-1507

    In this paper, we consider a similarity control problem for plants and specifications, modeled as nondeterministic automata. This problem requires us to synthesize a nondeterministic supervisor such that the supervised plant is simulated by a given specification. We assume that a supervisor can observe not only the event occurrence but also the current state of the plant. First, we derive a necessary and sufficient condition for the existence of a complete supervisor, which is a solution to the similarity control problem. Then, we present a method for synthesizing a maximally permissive similarity enforcing supervisor when the existence condition is satisfied.

  • Hierarchical Time-Slot Allocation for Dynamic Bandwidth Control in Optical Layer-2 Switch Network

    Masahiro NAKAGAWA  Kyota HATTORI  Naoki KIMISHIMA  Masaru KATAYAMA  Akira MISAWA  

     
    PAPER

      Vol:
    E97-B No:7
      Page(s):
    1303-1312

    We are developing an optical layer-2 switch network that uses both wavelength-division multiplexing and time-division multiplexing technologies for efficient traffic aggregation in metro networks. For efficient traffic aggregation, path bandwidth control is key because it strongly affects bandwidth utilization efficiency. We propose a fast time-slot allocation method that uses hierarchical calculation, which divides the network-wide bandwidth-allocation problem into small-scale local bandwidth-allocation problems and solves them independently. This method has a much shorter computation complexity and enables dynamic path bandwidth control in large-scale networks. Our network will be able to efficiently accommodate dynamic traffic with limited resources by using the proposed method, leading to cost-effective metro networks.

  • NBTI Mitigation Method by Inputting Random Scan-In Vectors in Standby Time

    Hiroaki KONOURA  Toshihiro KAMEDA  Yukio MITSUYAMA  Masanori HASHIMOTO  Takao ONOYE  

     
    PAPER

      Vol:
    E97-A No:7
      Page(s):
    1483-1491

    Negative Bias Temperature Instability (NBTI) is one of the serious concerns for long-term circuit performance degradation. NBTI degrades PMOS transistors under negative bias, whereas they recover once negative bias is removed. In this paper, we propose a mitigation method for NBTI-induced performance degradation that exploits the recovery property by shifting random input sequence through scan paths. With this method, we prevent consecutive stress that causes large degradation. Experimental results reveal that random scan-in vectors successfully mitigate NBTI and the path delay degradation is reduced by 71% in a test case when standby mode occupies 10% of total time. We also confirmed that 8-bit LFSR is capable of random number generation for this purpose with low area and power overhead.

  • The Use of Highpass Filtered Time-Spread Echo for Pitch Scaling Detection

    Hwai-Tsu HU  Hsien-Hsin CHOU  Ling-Yuan HSU  

     
    LETTER-Cryptography and Information Security

      Vol:
    E97-A No:7
      Page(s):
    1623-1626

    An echo-hiding scheme is presented to detect the pitch variation due to playback speed modification. The inserted time-spread echo is obtained by convolving the highpass filtered audio with a gain-controlled pseudo noise sequence. The perceptual evaluation confirms that the embedded echo is virtually imperceptible. Compared with the Fourier magnitude modulation, the proposed scheme attains better detection rates.

  • Reliable Decentralized Diagnosis of Discrete Event Systems Using the Conjunctive Architecture

    Takashi YAMAMOTO  Shigemasa TAKAI  

     
    PAPER-Concurrent Systems

      Vol:
    E97-A No:7
      Page(s):
    1605-1614

    In this paper, we study conjunctive decentralized diagnosis of discrete event systems (DESs). In most existing works on decentralized diagnosis of DESs, it is implicitly assumed that diagnosis decisions of all local diagnosers are available to detect a failure. However, it may be possible that some local diagnosis decisions are not available, due to some reasons. Letting n be the number of local diagnosers, the notion of (n,k)-conjunctive codiagnosability guarantees that the occurrence of any failure is detected in the conjunctive architecture as long as at least k of the n local diagnosis decisions are available. We propose an algorithm for verifying (n,k)-conjunctive codiagnosability. To construct a reliable conjunctive decentralized diagnoser, we need to compute the delay bound within which the occurrence of any failure can be detected as long as at least k of the n local diagnosis decisions are available. We show how to compute the delay bound.

  • Sliding Window-Based Transmit Antenna Selection Technique for Large-Scale MU-MIMO Networks

    Tae-Won BAN  Bang Chul JUNG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E97-A No:7
      Page(s):
    1640-1641

    In this letter, a novel antenna selection (AS) technique is proposed for the downlink of large-scale multi-user multiple input multiple output (MU-MIMO) networks, where a base station (BS) is equipped with large-scale antennas (N) and communicates simultaneously with K(K ≪ N) mobile stations (MSs). In the proposed scheme, the S antennas (S ≤ N) are selected by utilizing the concept of a sliding window. It is shown that the sum-rate of our proposed scheme is comparable to that of the conventional scheme, while the proposed scheme can significantly reduce the complexity of the BS.

  • Analysis on Effectiveness of Fractional Frequency Reuse for Uplink Using SC-FDMA in Cellular Systems

    Masashi FUSHIKI  Takeo OHSEKI  Satoshi KONISHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:7
      Page(s):
    1457-1466

    Single Carrier — Frequency Domain Multiple Access (SC-FDMA) is a multiple access technique employed in LTE uplink transmission. SC-FDMA can improve system throughput by frequency selective scheduling (FSS). In cellular systems using SC-FDMA in the uplink, interference arising from user equipments (UEs) in neighboring cells degrades the system throughput, especially the throughput of cell-edge UEs. In order to overcome this drawback, many papers have considered fractional frequency reuse (FFR) techniques and analyzed their effectiveness. However, these studies have come to different conclusions regarding the effectiveness of FFR because the throughput gain of FFR depends on the frequency reuse design and evaluation conditions. Previous papers have focused on the frequency reuse design. Few papers have examined the conditions where FFR is effective, and only the UE traffic conditions have been evaluated. This paper reveals other conditions where FFR is effective by demonstrating the throughput gain of FFR. In order to analyze the throughput gain of FFR, we focus on the throughput relationship between FFR and FSS. System level simulation results demonstrate that FFR is effective when the following conditions are met: (i) the number of UEs is small and (ii) the multipath delay spread is large or close to 0.

  • Analysis of Electromagnetic Scattering from a Conducting Spherical Shell by the 3D Point Matching Method with Mode Expansion

    Shinichiro OHNUKI  Kenichiro KOBAYASHI  Seiya KISHIMOTO  Tsuneki YAMASAKI  

     
    BRIEF PAPER

      Vol:
    E97-C No:7
      Page(s):
    714-717

    Electromagnetic scattering problems of canonical 2D structures can be analyzed with a high degree of accuracy by using the point matching method with mode expansion. In this paper, we will extend our previous method to 3D electromagnetic scattering problems and investigate the radar cross section of spherical shells and the computational accuracy.

  • Scene Text Character Recognition Using Spatiality Embedded Dictionary

    Song GAO  Chunheng WANG  Baihua XIAO  Cunzhao SHI  Wen ZHOU  Zhong ZHANG  

     
    LETTER-Image Recognition, Computer Vision

      Vol:
    E97-D No:7
      Page(s):
    1942-1946

    This paper tries to model spatial layout beyond the traditional spatial pyramid (SP) in the coding/pooling scheme for scene text character recognition. Specifically, we propose a novel method to build a dictionary called spatiality embedded dictionary (SED) in which each codeword represents a particular character stroke and is associated with a local response region. The promising results outperform other state-of-the-art algorithms.

  • On the Greatest Number of Paths and Maximal Paths for a Class of Directed Acyclic Graphs

    Shinsuke ODAGIRI  Hiroyuki GOTO  

     
    LETTER

      Vol:
    E97-A No:6
      Page(s):
    1370-1374

    For a fixed number of nodes, we focus on directed acyclic graphs in which there is not a shortcut. We find the case where the number of paths is maximized and its corresponding count of maximal paths. Considering this case is essential in solving large-scale scheduling problems using a PERT chart.

  • A Lossy Identification Scheme Using the Subgroup Decision Assumption

    Shingo HASEGAWA  Shuji ISOBE  

     
    PAPER

      Vol:
    E97-A No:6
      Page(s):
    1296-1306

    Lossy identification schemes are used to construct tightly secure signature schemes via the Fiat-Shamir heuristic in the random oracle model. Several lossy identification schemes are instantiated by using the short discrete logarithm assumption, the ring-LWE assumption and the subset sum assumption, respectively. For assumptions concerning the integer factoring, Abdalla, Ben Hamouda and Pointcheval [3] recently presented lossy identification schemes based on the φ-hiding assumption, the QR assumption and the DCR assumption, respectively. In this paper, we propose new instantiations of lossy identification schemes. We first construct a variant of the Schnorr's identification scheme, and show its lossiness under the subgroup decision assumption. We also construct a lossy identification scheme which is based on the DCR assumption. Our DCR-based scheme has an advantage relative to the ABP's DCR-based scheme since our scheme needs no modular exponentiation in the response phase. Therefore our scheme is suitable when it is transformed to an online/offline signature.

  • A Fully On-Chip, 6.66-kHz, 320-nA, 56ppm/°C, CMOS Relaxation Oscillator with PVT Variation Compensation Circuit

    Keishi TSUBAKI  Tetsuya HIROSE  Yuji OSAKI  Seiichiro SHIGA  Nobutaka KUROKI  Masahiro NUMA  

     
    PAPER

      Vol:
    E97-C No:6
      Page(s):
    512-518

    A fully on-chip CMOS relaxation oscillator (ROSC) with a PVT variation compensation circuit is proposed in this paper. The circuit is based on a conventional ROSC and has a distinctive feature in the compensation circuit that compensates for comparator's non-idealities caused by not only offset voltage, but also delay time. Measurement results demonstrated that the circuit can generate a stable clock frequency of 6.66kHz. The current dissipation was 320nA at 1.0-V power supply. The measured line regulation and temperature coefficient were 0.98%/V and 56ppm/°C, respectively.

  • Structured Adaptive Regularization of Weight Vectors for a Robust Grapheme-to-Phoneme Conversion Model

    Keigo KUBO  Sakriani SAKTI  Graham NEUBIG  Tomoki TODA  Satoshi NAKAMURA  

     
    PAPER-Speech Synthesis and Related Topics

      Vol:
    E97-D No:6
      Page(s):
    1468-1476

    Grapheme-to-phoneme (g2p) conversion, used to estimate the pronunciations of out-of-vocabulary (OOV) words, is a highly important part of recognition systems, as well as text-to-speech systems. The current state-of-the-art approach in g2p conversion is structured learning based on the Margin Infused Relaxed Algorithm (MIRA), which is an online discriminative training method for multiclass classification. However, it is known that the aggressive weight update method of MIRA is prone to overfitting, even if the current example is an outlier or noisy. Adaptive Regularization of Weight Vectors (AROW) has been proposed to resolve this problem for binary classification. In addition, AROW's update rule is simpler and more efficient than that of MIRA, allowing for more efficient training. Although AROW has these advantages, it has not been applied to g2p conversion yet. In this paper, we first apply AROW on g2p conversion task which is structured learning problem. In an evaluation that employed a dataset generated from the collective knowledge on the Web, our proposed approach achieves a 6.8% error reduction rate compared to MIRA in terms of phoneme error rate. Also the learning time of our proposed approach was shorter than that of MIRA in almost datasets.

  • 8-GHz Locking Range and 0.4-pJ Low-Energy Differential Dual-Modulus 10/11 Prescaler

    Takeshi MITSUNAKA  Masafumi YAMANOUE  Kunihiko IIZUKA  Minoru FUJISHIMA  

     
    PAPER

      Vol:
    E97-C No:6
      Page(s):
    486-494

    In this paper, we present a differential dual-modulus prescaler based on an injection-locked frequency divider (ILFD) for satellite low-noise block (LNB) down-converters. We fabricated three-stage differential latches using an ILFD and a cascaded differential divider in a 130-nm CMOS process. The prototype chip core area occupies 40µm × 20µm. The proposed prescaler achieved the locking range of 2.1-10GHz with both divide-by-10 and divide-by-11 operations at a supply voltage of 1.4V. Normalized energy consumptions are 0.4pJ (=mW/GHz) at a 1.4-V supply voltage and 0.24pJ at a 1.2-V supply voltage. To evaluate the tolerance of phase-difference deviation of the input differential pair from the perfect differential phase-difference, 180 degrees, we measured the operational frequencies for various phase-difference inputs. The proposed prescaler achieved the operational frequency range of 2.1-10GHz with an input phase-difference deviation of less than 90 degrees. However, the range of operational frequency decreases as the phase-difference deviation increases beyond 90 degrees and reaches 3.9-7.9GHz for the phase-difference deviation of 180 degrees (i.e. no phase difference). In addition, to confirm the fully locking operation, we measured the spurious noise and the phase noise degradation while reducing the supply voltage. The sensitivity analysis of the prescaler for various supply voltages can explain the above degradation of spectral purity. Spurious noise arises and the phase noise degrades with decreasing supply voltage due to the quasi- and non-locking operations. We verified the fully-locking operation for the LNB down-converter at a 1.4-V supply voltage.

  • Predictors of Pause Duration in Read-Aloud Discourse

    Xiaohong YANG  Mingxing XU  Yufang YANG  

     
    PAPER-Speech Synthesis and Related Topics

      Vol:
    E97-D No:6
      Page(s):
    1461-1467

    The research reported in this paper is an attempt to elucidate the predictors of pause duration in read-aloud discourse. Through simple linear regression analysis and stepwise multiple linear regression, we examined how different factors (namely, syntactic structure, discourse hierarchy, topic structure, preboundary length, and postboundary length) influenced pause duration both separately and jointly. Results from simple regression analysis showed that discourse hierarchy, syntactic structure, topic structure, and postboundary length had significant impacts on boundary pause duration. However, when these factors were tested in a stepwise regression analysis, only discourse hierarchy, syntactic structure, and postboundary length were found to have significant impacts on boundary pause duration. The regression model that best predicted boundary pause duration in discourse context was the one that first included syntactic structure, and then included discourse hierarchy and postboundary length. This model could account for about 80% of the variance of pause duration. Tests of mediation models showed that the effects of topic structure and discourse hierarchy were significantly mediated by syntactic structure, which was most closely correlated with pause duration. These results support an integrated model combining the influence of several factors and can be applied to text-to-speech systems.

1001-1020hit(4570hit)