The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SER(2307hit)

501-520hit(2307hit)

  • Energy-Efficient Rate Allocation for Multi-Homing Services in Heterogeneous Wireless Access Networks

    Hyeontaek OH  Joohyung LEE  Seong Gon CHOI  Jun Kyun CHOI  

     
    PAPER-Energy in Electronics Communications

      Vol:
    E97-B No:11
      Page(s):
    2316-2326

    Bandwidth aggregation (BAG) techniques have been researched for many years in an efforts to enhance throughput for multi-homed streaming service. However, despite of the considerable attention being devoted towards energy-efficient communications, the power efficiency for BAG has not been considered yet. To improve the power efficiency in multi-homed streaming service, this paper proposes Power Minimized Rate Allocation Scheme (PMRAS) with optimal rate allocation at each interface while guaranteeing an allowable packet loss rate. In developing PMRAS, we first formulate a power consumption model based on the network interface state (i.e. active and idle state). We adopt a Lagrangian algorithm to solve the convex optimization problem of power consumption. The performance results gained from a numerical analysis and simulations (NS-2) reveal that the proposed scheme offers superior performance over the existing rate allocation scheme for BAG with guaranteed required quality of service.

  • Distribution of Attention in Augmented Reality: Comparison between Binocular and Monocular Presentation Open Access

    Akihiko KITAMURA  Hiroshi NAITO  Takahiko KIMURA  Kazumitsu SHINOHARA  Takashi SASAKI  Haruhiko OKUMURA  

     
    INVITED PAPER

      Vol:
    E97-C No:11
      Page(s):
    1081-1088

    This study investigated the distribution of attention to frontal space in augmented reality (AR). We conducted two experiments to compare binocular and monocular observation when an AR image was presented. According to a previous study, when participants observed an AR image in monocular presentation, they perceived the AR image as more distant than in binocular vision. Therefore, we predicted that attention would need to be shifted between the AR image and the background in not the monocular observation but the binocular one. This would enable an observer to distribute his/her visual attention across a wider space in the monocular observation. In the experiments, participants performed two tasks concurrently to measure the size of the useful field of view (UFOV). One task was letter/number discrimination in which an AR image was presented in the central field of view (the central task). The other task was luminance change detection in which dots were presented in the peripheral field of view (the peripheral task). Depth difference existed between the AR image and the location of the peripheral task in Experiment 1 but not in Experiment 2. The results of Experiment 1 indicated that the UFOV became wider in the monocular observation than in the binocular observation. In Experiment 2, the size of the UFOV in the monocular observation was equivalent to that in the binocular observation. It becomes difficult for a participant to observe the stimuli on the background in the binocular observation when there is depth difference between the AR image and the background. These results indicate that the monocular presentation in AR is superior to binocular presentation, and even in the best condition for the binocular condition the monocular presentation is equivalent to the binocular presentation in terms of the UFOV.

  • PaperIO: A 3D Interface towards the Internet of Embedded Paper-Craft

    Kening ZHU  Rongbo ZHU  Hideaki NII  Hooman SAMANI  Borhan (Brian) JALAEIAN  

     
    PAPER

      Vol:
    E97-D No:10
      Page(s):
    2597-2605

    As the development of Internet-of-Things is moving towards large scale industry, such as logistic and manifacturing, there is a need for end-users to get involved in the process of creating IoT easily. In this paper, we introduce PaperIO, a paper-based 3D I/O interface, in which a single piece of paper can be sensed and actuated at the same time in three dimensions using the technology of selective inductive power transmission. With this technology, paper material with multiple embedded receivers, can not only selectively receive inductive power to perform paper-computing behavior, but also work as input sensors to communicate with power transmitter wirelessly. This technology allows the creation of paper-based sensor and actuators, and forms an Interent of Embedded Paper-craft. This paper presents the detailed implementation of the system, results of the technical experiments, and a few sample applications of the presented paper-based 3D I/O interface, and finally discusses the future plan of this research.

  • Transmission Rate by User Antenna Selection for Block Diagonalization Based Multiuser MIMO System

    Kentaro NISHIMORI  Takefumi HIRAGURI  Hideo MAKINO  

     
    PAPER

      Vol:
    E97-B No:10
      Page(s):
    2118-2126

    Multi-user MIMO (MU-MIMO) improves the system channel capacity by employing the transmission between a base station and multiple user terminals (UTs). Block Diagonalization (BD) has been proposed in order to realize MU-MIMO broadcast transmission. The BD algorithm cancels inter-user interference by creating the weights so that the channel matrixes for the other users are set to be zero matrixes. However, when the number of transmit antennas is equals to the total number of received antennas, the transmission rate by the BD algorithm is decreased. This paper proposes a new antenna selection method at the UTs to reduce the number of nulls for the other users except an intended user by the BD algorithm. It is verified via bit error rate (BER) evaluation that the proposed method is effective compared to the conventional BD algorithm, especially, when the number of users is increased with a low bit rate. Moreover, this paper evaluates the transmission rate based on IEEE802.11ac standard when considering BD algorithm with ideal user scheduling. Although the number of equivalent receive antenna is only one by the proposed method when the number of antennas at the the UT is two, it is shown that the transmission rate by the proposed method is higher than that by the conventional BD algorithm when the SNR is low even in the condition on user scheduling.

  • Field Experimental Evaluation of Null Control Performance of MU-MIMO Considering Smart Vertical MIMO in LTE-Advanced Downlink under LOS Dominant Conditions

    Yuki INOUE  Daiki TAKEDA  Keisuke SAITO  Teruo KAWAMURA  Hidehiro ANDOH  

     
    PAPER

      Vol:
    E97-B No:10
      Page(s):
    2136-2144

    The performance in terms of the user separation of multi-user multiple-input multiple-output (MU-MIMO) depends on not only the spatial correlation but also the location of the mobile stations (MSs). In order to take into account the performance in terms of the user separation, we need to consider the granularity of the beam and null width of the precoded antenna pattern in addition to the spatial correlation to determine the base station (BS) antenna configuration. In this paper, we propose Smart Vertical MIMO (SV-MIMO) as the best antenna configuration that achieves both spatial correlation and granularity of the beam and null width of the precoded antenna pattern. We evaluate SV-MIMO in a field experiment using a downlink 4-by-2 MU-MIMO configuration focusing on the dependency of the location of the MSs in Yokosuka, Japan. The majority of the measurement course is under line-of-sight (LOS) conditions in a single cell environment. The MSs are almost uniformly set 30 to 60 degrees in azimuth and 12 to 30 degrees in elevation and the distance from the BS antennas is approximately 150m at maximum. We also evaluate the performance of 4-by-2 MU-MIMO using the conventional type of horizontal array antenna and show the difference. The field experimental results show that throughput of greater than 1Gbps is achieved at the Cumulative Distribution Function (CDF) of 14% by employing SV-MIMO for Rank-4 MU-MIMO. The throughput of SV-MIMO is 30% higher than that for the horizontal array antenna configuration at the CDF of 50%.

  • Power Saving Efficiency Analysis of QoS Scheduling in the LTE Network Featuring Discontinuous Reception Operation

    Yen-Wen CHEN  Meng-Hsien LIN  Yung-Ta SU  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:10
      Page(s):
    2212-2221

    To lengthen the operational time of mobile devices, power must be managed effectively. To achieve this objective, a Discontinuous Reception (DRX) mechanism is proposed for use in the long-term evolution (LTE) network to enable user equipment (UE) to consume power efficiently. The DRX mechanism provides parameters related to base stations such as evolved Node B (eNB) to configure and manage the transition of UEs between idle (sleep) and active states. Although these parameters can be adjusted dynamically in cooperation with the traffic scheduler, a high signaling overhead and processing load might be introduced in practical deployment if the parameters are adjusted too frequently. In this study, to examine power-saving efficiency, distinct traffic types were scheduled that were constrained by various quality of service (QoS) factors without dynamically changing the DRX parameters. The concept of burst-based scheduling is proposed, based on considering the state transitions and channel conditions of each UE, to increase power-saving efficiency while concurrently satisfying the desired QoS. Both Hypertext Transfer Protocol (HTTP) and video-stream traffic models were exhaustively simulated to examine the performance of the proposed scheme and numerous scheduling alternatives were tested to compare the proposed scheme with other schemes. The simulation results indicate that video-streaming traffic is more sensitive to the scheduling schemes than HTTP traffic. The simulation results were further analyzed in terms of traffic scheduling and parameter adjustment and the analysis results can help design future studies on power management in the LTE network.

  • Tag-Group Based User Profiling for Personalized Search in Folksonomies

    Qing DU  Yu LIU  Dongping HUANG  Haoran XIE  Yi CAI  Huaqing MIN  

     
    PAPER-Artificial Intelligence, Data Mining

      Vol:
    E97-D No:10
      Page(s):
    2739-2747

    With the development of the Internet, there are more and more shared resources on the Web. Personalized search becomes increasingly important as users demand higher retrieval quality. Personalized search needs to take users' personalized profiles and information needs into consideration. Collaborative tagging (also known as folksonomy) systems allow users to annotate resources with their own tags (features) and thus provide a powerful way for organizing, retrieving and sharing different types of social resources. To capture and understand user preferences, a user is typically modeled as a vector of tag: value pairs (i.e., a tag-based user profile) in collaborative tagging systems. In such a tag-based user profile, a user's preference degree on a group of tags (i.e., a combination of several tags) mainly depends on the preference degree on every individual tag in the group. However, the preference degree on a combination of tags (a tag-group) cannot simply be obtained from linearly combining the preference on each tag. The combination of a user's two favorite tags may not be favorite for the user. In this article, we examine the limitations of previous tag-based personalized search. To overcome their problems, we model a user profile based on combinations of tags (tag-groups) and then apply it to the personalized search. By comparing it with the state-of-the-art methods, experimental results on a real data set shows the effectiveness of our proposed user profile method.

  • Improving Small-Delay Fault Coverage of On-Chip Delay Measurement by Segmented Scan and Test Point Insertion

    Wenpo ZHANG  Kazuteru NAMBA  Hideo ITO  

     
    PAPER-Dependable Computing

      Vol:
    E97-D No:10
      Page(s):
    2719-2729

    With IC design entering the nanometer scale integration, the reliability of VLSI has declined due to small-delay defects, which are hard to detect by traditional delay fault testing. To detect small-delay defects, on-chip delay measurement, which measures the delay time of paths in the circuit under test (CUT), was proposed. However, our pre-simulation results show that when using on-chip delay measurement method to detect small-delay defects, test generation under the single-path sensitization is required. This constraint makes the fault coverage very low. To improve fault coverage, this paper introduces techniques which use segmented scan and test point insertion (TPI). Evaluation results indicate that we can get an acceptable fault coverage, by combining these techniques for launch off shift (LOS) testing under the single-path sensitization condition. Specifically, fault coverage is improved 27.02∼47.74% with 6.33∼12.35% of hardware overhead.

  • Coherent Combining-Based Initial Ranging Scheme for MIMO-OFDMA Systems

    Yujie XIA  Guangliang REN  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:10
      Page(s):
    2203-2211

    A coherent combining-based initial ranging scheme is proposed for multiple-input multiple-output and orthogonal frequency division multiple access systems. The proposed algorithm utilizes the correlation properties of the ranging codes to resolve the multipath components, coherently combines the initial ranging signal of resolved path on each receiving antenna to maximize the output signal-to-interference-and-noise ratio, and then collects the power of the multipath signals to detect the states of the ranging codes. Simulation results show that the proposed scheme has much better performance than the available noncoherent combining method, and can accommodate more active ranging users simultaneously in each cell.

  • Privacy-Preserving Statistical Analysis Method by Splitting Server Roles for Distributed Real-World Data

    Jun ISHII  Hiroyuki MAEOMICHI  Akihiro TSUTSUI  Ikuo YODA  

     
    PAPER

      Vol:
    E97-B No:9
      Page(s):
    1779-1789

    This paper propose a novel method for obtaining statistical results such as averages, variances, and correlations without leaking any raw data values from data-holders by using multiple pseudonyms. At present, to obtain statistical results using a large amount of data, we need to collect all data in the same storage device. However, gathering real-world data that were generated by different people is not easy because they often contain private information. The authors split the roles of servers into publishing pseudonyms and collecting answers. Splitting these roles, different entities can more easily join as pseudonym servers than in previous secure multi-party computation methods and there is less chance of collusion between servers. Thus, our method enables data holders to protect themselves against malicious attacks from data users. We also estimated a typical problem that occurred with our method and added a pseudonym availability confirmation protocol to prevent the problem. We report our evaluation of the effectiveness of our method through implementation and experimentation and discuss how we incorporated the WebSocket protocol and MySQL Memoty Storage Engine to remove the bottleneck and improve the implementation style. Finally, we explain how our method can obtain averages, variances, and correlation from 5000 data holders within 50 seconds.

  • Equivalent Circuit Model of High Speed VCSEL Implemented in Circuit Simulators

    Kazunori MIYOSHI  

     
    PAPER-Lasers, Quantum Electronics

      Vol:
    E97-C No:9
      Page(s):
    904-910

    Optical interfaces have been recently standardized as the main physical layer interfaces for most short length optical communication systems, such as IEEE802.3ae, OIF-VSR, and the Fiber Channel. As interface speed increases, the requirements for forecasting the optical characteristics of direct modulated laser diodes (LDs) also increase because those standards define the specifications for physical layers with optical domains. In this paper, a vertical-cavity surface-emitting laser (VCSEL) equivalent electronic circuit model is described with which designers can simulate the $I-L-V$, S-parameter, and transient characteristics of LDs on a circuit simulator by improving convergence. We show that the proposed VCSEL model can model an 850-nm bandwidth VCSEL with 10-Gbps operation.

  • Outage Probability of N-th Best User Selection in Multiuser Two-Way Relay Networks over Nakagami-m Fading

    Jie YANG  Yingying YUAN  Nan YANG  Kai YANG  Xiaofei ZHANG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E97-A No:9
      Page(s):
    1987-1993

    We analyze the outage probability of the multiuser two-way relay network (TWRN) where the N-th best mobile user (MU) out of M MUs and the base station (BS) exchange messages with the aid of an amplify-and-forward relay. In the analysis, we focus on the practical unbalanced Nakagami-m fading between the MUs-relay link and the relay-BS link. We also consider both perfect and outdated channel state information (CSI) between the MUs and the relay. We first derive tight closed-form lower bounds on the outage probability. We then derive compact expressions for the asymptotic outage probability to explicitly characterize the network performance in the high signal-to-noise ratio regime. Based on our asymptotic results, we demonstrate that the diversity order is determined by both Nakagami-m fading parameters, M, and N when perfect CSI is available. When outdated CSI is available, the diversity order is determined by Nakagami-m fading parameters only. In addition, we quantify the contributions of M, N, and the outdated CSI to the outage probability via the array gain.

  • Learning a Two-Dimensional Fuzzy Discriminant Locality Preserving Subspace for Visual Recognition

    Ruicong ZHI  Lei ZHAO  Bolin SHI  Yi JIN  

     
    PAPER-Pattern Recognition

      Vol:
    E97-D No:9
      Page(s):
    2434-2442

    A novel Two-dimensional Fuzzy Discriminant Locality Preserving Projections (2D-FDLPP) algorithm is proposed for learning effective subspace of two-dimensional images. The 2D-FDLPP algorithm is derived from the Two-dimensional Locality Preserving Projections (2D-LPP) by exploiting both fuzzy and discriminant properties. 2D-FDLPP algorithm preserves the relationship degree of each sample belonging to given classes with fuzzy k-nearest neighbor classifier. Also, it introduces between-class scatter constrain and label information into 2D-LPP algorithm. 2D-FDLPP algorithm finds the subspace which can best discriminate different pattern classes and weakens the environment factors according to soft assignment method. Therefore, 2D-FDLPP algorithm has more discriminant power than 2D-LPP, and is more suitable for recognition tasks. Experiments are conducted on the MNIST database for handwritten image classification, the JAFFE database and Cohn-Kanade database for facial expression recognition and the ORL database for face recognition. Experimental results reported the effectiveness of our proposed algorithm.

  • An Adaptive High Gain Observer Design for Nonlinear Systems

    Sungryul LEE  

     
    LETTER-Systems and Control

      Vol:
    E97-A No:9
      Page(s):
    1966-1970

    This paper studies an adaptive high gain observer design for nonlinear systems which have lower triangular nonlinearity with Lipschitz coefficient, depending on the control input. Because the gain of the proposed observer is tuned automatically by a simple update law, our design approach doesn't need any information about the Lipschitz constant. Also, it is shown that under some assumptions, the dynamic gain of the proposed observer is bounded and its estimation error converges to zero asymptotically. Finally, a numerical example is given to verify the effectiveness of our design approach.

  • Full-Order Observer for Discrete-Time Linear Time-Invariant Systems with Output Delays

    Joon-Young CHOI  

     
    LETTER-Systems and Control

      Vol:
    E97-A No:9
      Page(s):
    1975-1978

    We design a full-order observer for discrete-time linear time-invariant systems with constant output delays. The observer design is based on the output delay model expressed by a two-dimensional state variable, with discrete-time and space independent variables. Employing a discrete-time state transformation, we construct an explicit strict Lyapunov function that enables us to prove the global exponential stability of the full-order observer error system with an explicit estimate of the exponential decay rate. The numerical example demonstrates the design of the full-order observer and illustrates the validity of the exponential stability.

  • Efficient Multi-Service Allocation for Digital Terrestrial Broadcasting Systems

    Bo HAO  Jun WANG  Zhaocheng WANG  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E97-B No:9
      Page(s):
    1977-1983

    This paper presents an efficient multi-service allocation scheme for the digital television terrestrial broadcasting systems in which the fixed service is modulated by orthogonal frequency division multiplexing and quadrature amplitude modulation (OFDM/QAM) with larger FFT size and the added mobile service is modulated by OFDM and offset quadrature amplitude modulation (OQAM) with smaller FFT size. The two different types of services share one 8MHz broadcasting channel. The isotropic orthogonal transform algorithm (IOTA) is chosen as the shaping filter for OQAM because of its isotropic convergence in time and frequency domain and the proper FFT size is selected to maximum the transmission capacity under mobile environment. The corresponding transceiver architecture is also proposed and analyzed. Simulations show that the newly added mobile service generates much less out-of-band interference to the fixed service and has a better performance under fast fading wireless channels.

  • A QoS-Aware Differential Processing Control Scheme for OpenFlow-Based Mobile Networks

    Yeunwoong KYUNG  Taihyong YIM  Taekook KIM  Tri M. NGUYEN  Jinwoo PARK  

     
    LETTER-Information Network

      Vol:
    E97-D No:8
      Page(s):
    2178-2181

    This paper proposes a QoS-aware differential processing control (QADPC) scheme for OpenFlow-based mobile networks. QADPC classifies the input packets to the control plane by considering end terminal mobility and service type. Then, different capacities are assigned to each classified packet for prioritized processing. By means of Markov chains, QADPC is evaluated in terms of blocking probability and waiting time in the control plane. Analytical results demonstrate that QADPC offers high priority packets both lower blocking probability and less waiting time.

  • Tracking Analysis of Adaptive Filters with Error and Matrix Data Nonlinearities

    Wemer M. WEE  Isao YAMADA  

     
    PAPER-Digital Signal Processing

      Vol:
    E97-A No:8
      Page(s):
    1659-1673

    We consider a unified approach to the tracking analysis of adaptive filters with error and matrix data nonlinearities. Using energy-conservation arguments, we not only derive earlier results in a unified manner, but we also obtain new performance results for more general adaptive algorithms without requiring the restriction of the regression data to a particular distribution. Numerical simulations support the theoretical results.

  • A Queueing Model of a Multi-Service System with State-Dependent Distribution of Resources for Each Class of Calls

    Slawomir HANCZEWSKI  Maciej STASIAK  Joanna WEISSENBERG  

     
    PAPER

      Vol:
    E97-B No:8
      Page(s):
    1592-1605

    This paper presents a new, accurate multi-service model of a queueing system with state-dependent distribution of resources for each class of calls. The analysis of the considered queueing system was carried out at both the microstate and macrostate levels. The proposed model makes it possible to evaluate averaged parameters of queues for individual classes of calls that are offered to the system. In addition, the paper proposes a new algorithm for a determination of the occupancy distribution in the queueing system at the microstate level. The results of the calculations are compared with the results of a digital simulation for multi-service queueing systems with state-independent distribution of resources.

  • EDISON Science Gateway: A Cyber-Environment for Domain-Neutral Scientific Computing

    Hoon RYU  Jung-Lok YU  Duseok JIN  Jun-Hyung LEE  Dukyun NAM  Jongsuk LEE  Kumwon CHO  Hee-Jung BYUN  Okhwan BYEON  

     
    PAPER-Scientific Application

      Vol:
    E97-D No:8
      Page(s):
    1953-1964

    We discuss a new high performance computing service (HPCS) platform that has been developed to provide domain-neutral computing service under the governmental support from “EDucation-research Integration through Simulation On the Net” (EDISON) project. With a first focus on technical features, we not only present in-depth explanations of the implementation details, but also describe the strengths of the EDISON platform against the successful nanoHUB.org gateway. To validate the performance and utility of the platform, we provide benchmarking results for the resource virtualization framework, and prove the stability and promptness of the EDISON platform in processing simulation requests by analyzing several statistical datasets obtained from a three-month trial service in the initiative area of computational nanoelectronics. We firmly believe that this work provides a good opportunity for understanding the science gateway project ongoing for the first time in Republic of Korea, and that the technical details presented here can be served as an useful guideline for any potential designs of HPCS platforms.

501-520hit(2307hit)