The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SI(16314hit)

9621-9640hit(16314hit)

  • Simplification of an Array Antenna by Reducing the Fed Elements

    Tadashi TAKANO  Noriyuki KAMO  Akira SUGAWARA  

     
    LETTER-Antennas and Propagation

      Vol:
    E88-B No:9
      Page(s):
    3811-3814

    This paper proposes the design to reduce the number of fed elements by replacing with parasitic elements in an array antenna. The study depends on the analysis of electromagnetic wave fields in consideration of the coupling between the half-wavelength dipoles. The case of 2 fed elements and 2 parasitic elements is considered as a unit cell to form the total array. After optimizing the element arrangement, the antenna gain can match that of the equivalent 4-fed element case. Feeding networks in a high power radiating system are analyzed in terms of the length and matching of feed lines, and the arrangement of amplifiers.

  • Transmit Power Efficiency of Multi-Hop MRC Diversity for a Virtual Cellular Network

    Imane DAOU  Eisuke KUDOH  Fumiyuki ADACHI  

     
    LETTER

      Vol:
    E88-B No:9
      Page(s):
    3643-3648

    In virtual cellular network (VCN), proposed for high-speed packet mobile communications, the signal transmitted from a mobile terminal is received by wireless ports distributed in each virtual cell and relayed to the central port that acts as a gateway to the core network. In this letter, we apply the multi-hop maximal ratio combining (MHMRC) diversity and propose the route modification algorithm in order to improve transmit power efficiency degradation caused by the carrier frequency difference between the control and the data communication channels for VCN. The transmit power efficiency and the distribution of the number of hops are evaluated by computer simulation for a VCN.

  • Design and Analysis of Synthesized Template Waveform for Receiving UWB Signals

    Kentaro TANIGUCHI  Ryuji KOHNO  

     
    PAPER-Pulse Shape

      Vol:
    E88-A No:9
      Page(s):
    2299-2309

    Ultra Wideband (UWB) communication system utilizing impulse signals is attractive technique which can achieve high data rate with low complexity and low power consumption. In this impulse based UWB system, lots of different shaped pulses have been considered to represent more information bits per symbol. In order to detect these different shaped UWB signals at the receiver, the synthesized template generation method using several elementary waveforms is effective. In this paper we design and analyze this synthesized template waveform instead of the conventional matched filter technique. The synthesis of UWB template waveform can be achieved as combinations of orthogonalized elementary waveforms with Fourier coefficients. By adjusting the number of elementary waveforms and their coefficients, it is possible to detect several types of UWB signals. The orders of approximation corresponding to different number of elementary waveforms are analyzed and the bit error rate properties are then investigated in AWGN and multipath fading channels. In addition, the proposed system can capture more energy by adjusting its coefficients adaptively under the multipath environment and reduce the effect of Intra-Pulse Interference (IPI) which is occurred when the propagation channel is not separable, that is, multipath components spaced closer than the typical pulse width. We show the design of the adaptive template synthesis method and its performance compared with conventional Rake receiver.

  • Wrapper Scan Chains Design for Rapid and Low Power Testing of Embedded Cores

    Yinhe HAN  Yu HU  Xiaowei LI  Huawei LI  Anshuman CHANDRA  Xiaoqing WEN  

     
    PAPER-Dependable Computing

      Vol:
    E88-D No:9
      Page(s):
    2126-2134

    Connection of internal scan chains in core wrapper design (CWD) is necessary to handle the width match of TAM and internal scan chains. However, conventional serial connection of internal scan chains incurs power and time penalty. Study shows that the distribution and high density of don't care bits (X-bits) in test patterns make scan slices overlapping and partial overlapping possible. A novel parallel CWD (pCWD) approach is presented in this paper for lowering test power by shortening wrapper scan chains and adjusting test patterns. In order to achieve shift time reduction from overlapping in pCWD, a two-phase process on test pattern: partition and fill, is presented. Experimental results on d695 of ITC2002 benchmark demonstrated the shift time and test power have been decreased by 1.5 and 15 times, respectively. In addition, the proposed pCWD can be used as a stand-alone time reduction technique, which has better performance than previous techniques.

  • Enhancement of Nonlinearity due to Cavity Effect of a Quantum Dot

    Hiroshi AJIKI  

     
    PAPER

      Vol:
    E88-C No:9
      Page(s):
    1803-1808

    The effect of a cavity on the third-order optical nonlinearity, is studied for a two-level system with excitation frequency ω0, as a function of the Q factor, coupling constant g, and longitudinal (γ1) and pure transverse (γ2) damping constants. The largest enhancement is found in the strong-coupling regime with γ1+2γ2=ω0/2Q. Large enhancement is also achieved in the weak-coupling regime satisfying the condition , and the intensity depends on damping constants only. The calculation is based on the cavity QED because the semiclassical treatment of the cavity quasimode leads to incorrect optical nonlinearity.

  • System of the Real-Time Acquisition and Recognition for Iris Images

    Kang Ryoung PARK  

    This paper was deleted on March 10, 2006 because it was found to be a duplicate submission (see details in the pdf file).
     
    PAPER-Vision

      Vol:
    E88-A No:9
      Page(s):
    2436-2445

    Iris recognition is to identify a user based on the iris texture information which exists between the white sclera and the black pupil. Iris recognition system has been in the limelight for high-security biometric applications due to the advantages of non-contact characteristics and the highest recognition performance among biometric systems. Conventional iris recognition systems consist of the iris camera and the processing unit, like a PC or an embedded control box. The iris camera captures the user's iris images and transfers them to the processing unit. In the processing unit, the captured images are processed and recognition is performed. For fast recognition, it is very important to capture the user's focused eye image at fast speed. If not, the total recognition time is increased and it makes the user feel much inconvenience. In previous researches and systems, they use the focusing method which has been used for general landscape scenes without considering the characteristics of iris image. So, they take much focusing time sometimes, especially in the case of the user with glasses. To overcome such a problem, we propose a new iris image acquisition method to capture the user's focused eye image at very fast speed. It can be applicable to the users both with and without glasses.

  • Dynamic RWA Based on the Combination of Mobile Agents Technique and Genetic Algorithms in WDM Networks with Sparse Wavelength Conversion

    Vinh Trong LE  Xiaohong JIANG  Son Hong NGO  Susumu HORIGUCHI  

     
    PAPER

      Vol:
    E88-D No:9
      Page(s):
    2067-2078

    Genetic Algorithms (GA) provide an attractive approach to solving the challenging problem of dynamic routing and wavelength assignment (RWA) in optical Wavelength Division Multiplexing (WDM) networks, because they usually achieve a significantly low blocking probability. Available GA-based dynamic RWA algorithms were designed mainly for WDM networks with a wavelength continuity constraint, and they cannot be applied directly to WDM networks with wavelength conversion capability. Furthermore, the available GA-based dynamic RWA algorithms suffer from the problem of requiring a very time consuming process to generate the first population of routes for a request, which may results in a significantly large delay in path setup. In this paper, we study the dynamic RWA problem in WDM networks with sparse wavelength conversion and propose a novel hybrid algorithm for it based on the combination of mobile agents technique and GA. By keeping a suitable number of mobile agents in the network to cooperatively explore the network states and continuously update the routing tables, the new hybrid algorithm can promptly determine the first population of routes for a new request based on the routing table of its source node, without requiring the time consuming process associated with current GA-based dynamic RWA algorithms. To achieve a good load balance in WDM networks with sparse wavelength conversion, we adopt in our hybrid algorithm a new reproduction scheme and a new fitness function that simultaneously takes into account the path length, number of free wavelengths, and wavelength conversion capability in route selection. Our new hybrid algorithm achieves a better load balance and results in a significantly lower blocking probability than does the Fixed-Alternate routing algorithm, both for optical networks with sparse and full-range wavelength converters and for optical networks with sparse and limited-range wavelength converters. This was verified by an extensive simulation study on the ns-2 network simulator and two typical network topologies. The ability to guarantee both a low blocking probability and a small setup delay makes the new hybrid dynamic RWA algorithm very attractive for current optical circuit switching networks and also for the next generation optical burst switching networks.

  • The Roles of Phase Transition in Multi-Agent Performance Regulation

    Kouji HARADA  Tetuo KINOSHITA  

     
    PAPER

      Vol:
    E88-D No:9
      Page(s):
    2039-2046

    The resource allocation problem in multi-agent systems is one of the crucial problems hindering the development of multi-agent technologies. This study demonstrates that "time delay" functions as an effective factor in a resource allocation, contrasting to the conventional real-time oriented multi-agent paradigm by 1) introducing a "fickle" agent, whose own strategy fluctuates randomly, and 2) an agent repository mechanism. This study also demonstrates that in the resource allocation process, time delay induces dramatic changes in performance, the specific phenomenon is the so-called "phase transition phenomenon". This finding means emergence of the phase transition is cited as a major factor governing multi-agent system performance. This knowledge is of essential importance in the regulation in multi-agent performance.

  • Ultra Wideband Signal Propagation in Desktop Environments

    Yoshiyuki SUZUKI  Takehiko KOBAYASHI  

     
    PAPER-Propagation

      Vol:
    E88-A No:9
      Page(s):
    2272-2278

    Short-range propagation measurements were carried out using ultra wideband (UWB) and continuous wave (CW) signals on a rectangular aluminum conductive plate, simulating typical office desks, with and without a low vertical metal partition panels. The frequency of the UWB signal spanned from 3.1 to 10.6 GHz and that of the CW signal was 6.85 GHz. A vector network analyzer and two omnidirectional UWB antennas were used to obtain the frequency-domain response of the propagation paths. With the partition panel, the CW reception level showed approximately a 20-dB spatial variation, induced by the interference between the direct and the reflected waves, but the UWB reception level had no particular plunges. The additional losses were also measured when the 500-mm propagation path was blocked with a human arm, a coffee cup, and a copy paper pile and when the receiving antenna was covered with a human palm on the plate without the partition panel. The maximum additional propagation losses were found as follows: 10-12 dB by a human arm, 10 dB with a coffee cup, and 2 dB with a paper pile. Further additional loss caused by a palm covering the antenna was found to be 10 to 12 dB, mainly due to palm absorption.

  • A Method for Building More Non-supersingular Elliptic Curves Suitable for Pairing-based Cryptosystems

    Shi CUI  Pu DUAN  ChoongWah CHAN  

     
    LETTER-Information Security

      Vol:
    E88-A No:9
      Page(s):
    2468-2470

    Non-supersingular elliptic curves are important for the security of pairing-based cryptosystems. But there are few suitable non-supersingular elliptic curves for pairing-based cryptosystems. This letter introduces a method which allows the existing method to generate more non-supersingular elliptic curves suitable for pairing-based cryptosystems when the embedding degree is 6.

  • Ultra Wideband Time Hopping Impulse Radio Signal Impact on Performance of TD-SCDMA

    Guangrong YUE  Hongyu CHEN  Shaoqian LI  

     
    PAPER-Co-existance

      Vol:
    E88-A No:9
      Page(s):
    2373-2380

    This paper studies power spectrum density (PSD) of multi-user aggregate time hopping (TH) ultra wideband (UWB) signal with asynchronous transmission and synchronous transmission. TH codes under consideration are deterministic periodic code and random integer code. Based on the PSD, the in-band interference power for TD SCDMA is investigated as function of UWB system parameters. Two UWB modulations, TH pulse position modulation (PPM) and TH BPSK, are considered for calculating the in-band interference power. The numerical results indicate that asynchronous transmission is an effective way to decrease the peak in-band interference caused by multi-user aggregate TH-PPM UWB signal. Although increasing the maximum of time hopping code elements can smooth the PSD of TH UWB signal, it is not a good idea for reducing the peak in-band interference for TD SCDMA. For the random integer TH code, while only TH UWB continuous spectral exists in TD SCDMA band or multi-user signals of TH UWB are transmitted asynchronously, the in-band interference for TD SCDMA is in proportion to the number of the UWB users. For TD SCDMA in which band discrete spectral line exists the in-band interference caused by TH UWB with synchronous transmission is in proportion to the square of the number of the UWB users.

  • A Multi-Agent Framework for Conflict Analysis and Negotiation: Case of COTS Selection

    Tom WANYAMA  Behrouz H. FAR  

     
    PAPER

      Vol:
    E88-D No:9
      Page(s):
    2047-2058

    The process of evaluating and selecting Commercial Off-The-Shelf (COTS) products is complicated because of conflicting priorities of the stakeholders, complex interdependences among the evaluation criteria, multiple evaluation objectives, changing system requirements, and a large number of similar COTS products with extreme capability differences. Numerous COTS evaluation and selection methods have been proposed to address the complexity of the process. Some of these methods have been successfully applied in industry. However, negotiation to resolve stakeholder conflicts is still an ad hoc process. In this paper, we present a systematic model that assists the COTS selection stakeholders in identifying conflicts, as well as in determining and evaluating conflict resolution options. Our model is facilitated by an agent-based decision support system, which has user agents that assist the stakeholders in the COTS evaluation and negotiation process. The agents utilize a hybrid of analytic and artificial intelligence techniques to identify conflicts and the corresponding agreement options. Moreover, each user agent analyzes the agreement options in detail before advising its client about which goals to optimize, and which goals to compromise in order to reach agreement with the other stakeholders. Finally, the community of agents facilitates information sharing among stakeholders in a bid to improve the quality of their COTS selection decisions.

  • The Development of a Computational Environment for Cellular Automata

    Yuhei AKAMINE  Satoshi ENDO  Koji YAMADA  

     
    PAPER-Automata and Formal Language Theory

      Vol:
    E88-D No:9
      Page(s):
    2105-2112

    In this paper, we introduce and describe the computational environment that we have developed for cellular automata (CA). CA are powerful methods to understand and simulate the behavior of complex systems such as traffic jams, fluid crosscurrents, and natural disasters. In CA method, modeling of such a system or a phenomenon is to define a transition function, which determines local interactions, so-called "CA rules." However, no systematic method for design of CA rules has been established. We require a CA simulator for "trial and error" in study of modeling based on CA. Furthermore, the CA simulation environment that does not require special knowledge of a user for parallel processing is desired. The purpose of this study is to develop a comprehensive system that enables us to expedite the design of local rules and to accelerate simulations. We have implemented two kinds of simulators differing in their characteristics to improve both design efficiency and execution speed. The major difference between the two simulators is whether a source code is compiled or not. The source code is described in DORA language the authors have designed for the system. DORA language is designed for describing CA rules simply.

  • Novel Stacked Packaging Structure Using Silica-Based PLC with Integrated Micro-Mirrors and Its Application to 8ch PD Array Module

    Ikuo OGAWA  Makoto ABE  Yoshiyuki DOI  Senichi SUZUKI  

     
    PAPER-Optical Interconnection

      Vol:
    E88-C No:8
      Page(s):
    1552-1558

    We propose and demonstrate a new stacked packaging structure using silica-based planar lightwave circuits (PLCs) with integrated micro-mirrors. This structure enables us to integrate active devices on PLCs with certain flexibility as regards optical coupling design and device selection. To achieve this, we developed an integrated micro-mirror with an accurate reflection angle and shielding structures to prevent crosstalk, and successfully demonstrated an 8-channel photodiode array module with excellent characteristics consisting of a high responsivity of > 0.85 A/W and a low crosstalk of < -65 dB.

  • Design Method for 2-Channel Signal Word Decomposed Filters with Minimum Output Error and Their Effective VLSI Implementation

    Kouhei HOSOKAWA  Mitsuhiko YAGYU  Akinori NISHIHARA  

     
    PAPER-Digital Signal Processing

      Vol:
    E88-A No:8
      Page(s):
    2044-2054

    This paper proposes hardware-efficient VLSI architectures for 2-channel signal word decomposed filters (2-ch SWDFs) and their design method in consideration of the implemented circuit size. By consideration of the circuit size in design method, 2-ch SWDFs with a minimum output error among SWDFs whose size is equal to or smaller than a specification can be designed. Canonical Signed Digit expressions are used to effectively represent the filter coefficients of the SWDFs in order to make its circuit size small. Through precise analysis of the internal structures, circuit size can be accurately estimated. Some design examples show that the proposed method can design filters whose output error is about -12 dB lower than that of the linear FIR filters. Compared to an exhaustive search method, our method is much faster and can design filters whose output errors are only about 2 dB more.

  • A Compact Design of W-Band High-Pass Waveguide Filter Using Genetic Algorithms and Full-Wave Finite Element Analysis

    An-Shyi LIU  Ruey-Beei WU  Yi-Cheng LIN  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E88-C No:8
      Page(s):
    1764-1771

    This paper proposes an efficient two-phase optimization approach for a compact W-band double-plane stepped rectangular waveguide filter design, which combines genetic algorithms (GAs) with the simplified transmission-line model and full-wave analysis. Being more efficient and robust than the gradient-based method, the approach can lead to a compact waveguide filter design. Numerical results show that the resultant waveguide filter design with 4 sections (total length 19.6 mm) is sufficient to meet the design goal and provides comparable performance to that with 8 sections (total length 35.6 mm) by the Chebyshev synthesis approach. Based on the present approach, nineteen compact high-pass waveguide filters have been implemented and measured at the W-band with satisfactory performance.

  • Characteristics of Balance-Unbalance Conversion Factor and Radiated Emission for Differential Type Microstrip Lines with Partial Unbalance

    Ken FUJIYOSHI  Masatake SHIGENAGA  Chiharu MIYAZAKI  Masamitsu TOKUDA  

     
    PAPER-Printed Circuit Boards

      Vol:
    E88-B No:8
      Page(s):
    3200-3206

    In this paper, a balance-unbalance conversion factor (TCTL: Transverse Conversion Transfer Loss, TCL: Transverse Conversion Loss) and a radiated emission for differential type microstrip lines with a partial unbalance on a PCB (Printed Circuit Board) are investigated. As the result, after inserting an unbalance element, it can be seen that a radiated emission increased according to the deterioration of TCL. The calculated results of the TCTL and TCL by using 4-terminal pair network chain matrix agreed with the measured results very well. In order to calculate radiated emission from the differential type microstrip lines, a common mode current on differential type microstrip lines with a partial unbalance was calculated by using 4-terminal pair network chain matrix. The calculated results of the radiated emission also agreed with the measured results.

  • Design of Ogg Vorbis Decoder System for Embedded Platform

    Atsushi KOSAKA  Hiroyuki OKUHATA  Takao ONOYE  Isao SHIRAKAWA  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E88-A No:8
      Page(s):
    2124-2130

    This paper describes a design of Ogg Vorbis decoder for embedded platform. Since Ogg Vorbis decoding process incurs high computational complexity, a trivial software-based implementation requires high operation frequency. Thus in our design specific hardware modules are devised for functional blocks, which have higher computational complexity than other blocks in Ogg Vorbis decoding process. Based on computational cost analysis of whole decoding process, IMDCT (Inverse Modified Discrete Cosine Transform) and residue decoding process are detected as the computation-intensive functional blocks. As a result of hardware implementation, 73% improvement in CPU load is achieved by specific hardware modules for IMDCT and residue decoding process.

  • Estimation of Short Range Multiple Coherent Source Location by Using MUSIC Algorithm

    Takashi KATO  Kazumasa TAIRA  Kunio SAWAYA  Risaburo SATO  

     
    LETTER

      Vol:
    E88-B No:8
      Page(s):
    3317-3320

    An estimation method of source location of undesired electromagnetic wave from electronic devices by using the MUSIC algorithm is proposed. The MUSIC algorithm can estimate the direction of arrival accurately, however, the estimation error is large in the case of short range multiple coherent sources. In order to overcome this problem, a method to improve the estimation accuracy is presented. Experimental results show that the proposed method can reduce the maximum estimation error from 7 cm of the conventional method to 2 cm.

  • Efficient Compression Method for Cell Animation Video

    Byongseok MIN  Seungjong KIM  Mrinal MANDAL  Jechang JEONG  

     
    PAPER-Multimedia Systems for Communications" Multimedia Systems for Communications

      Vol:
    E88-B No:8
      Page(s):
    3443-3450

    Animation video is becoming very popular with the availability of low cost computing resources. The cell animation is a popular method, used for producing animation video. In order to efficiently encode these videos, conventional video codecs, such as AutoDesk Animation Pro FLC, Intel Indeo 5, and MPEG-4 can be used to achieve high compression. However, when cell animation videos are compressed at very low bit rate by these traditional codecs, objectionable artifacts, e.g., false color, blurred contours, and blocking artifact, are severely occurred. In this paper, we propose an efficient compression method for cell animation images. The proposed method employs hybrid coding scheme which includes intraframe and interframe coding modes. The intraframe mode consists of color quantization, adaptive differential pulse code modulation, forward classification, and Golomb-Rice coding. The interframe coding consists of block-based techniques and exploits the characteristics of motion. Simulation results show that the proposed method provides superior performance over AutoDesk Animation Pro FLC, MPEG-1, Intel Indeo 5, and MPEG-4 standards.

9621-9640hit(16314hit)