The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SI(16314hit)

16281-16300hit(16314hit)

  • Process Simulation for Laser Recrystallization

    Bo HU  Albert SEIDL  Gertraud NEUMAYER  Reinhold BUCHNER  Karl HABERGER  

     
    PAPER

      Vol:
    E75-C No:2
      Page(s):
    138-144

    Modeling and numerical simulation of crystal growth of Si film and heat transport in 3D structure were made for optimization of physical and geometrical parameters used during laser recrystallization. Based on simulations a new concept called micro-absorber was introduced for obtaining defect-free Si films.

  • Testing the k-Layer Routability in a Circular Channel--Case in which No Nets Have Two Terminals on the Same Circle--

    Noriya KOBAYASHI  Toshinobu KASHIWABARA  Sumio MASUDA  

     
    PAPER-Computer Aided Design (CAD)

      Vol:
    E75-A No:2
      Page(s):
    233-239

    Suppose that there are terminals on two concentric circles, Cin and Cout, with Cin inside of Cout. We are given a set of nets each of which consists of a terminal on Cin and a terminal on Cout. The routing area is the annular region between the two circles. In this paper, we present an O(nk-1) time algorithm for testing whether the given net set is k-layer routable without vias, where k2 and n is the number of nets.

  • A New Overfitting Lattice Filter for ARMA Parameter Estimation with Additive Noise

    Weimin SUN  Takashi YAHAGI  

     
    PAPER-Digital Signal Processing

      Vol:
    E75-A No:2
      Page(s):
    247-254

    This paper presents a new method for estimating lattice parameters of a system with additive white noise. A new lattice structure filter is used to reduce the effect of additive white noise, and then, an overfitting lattice filter is proposed to obtain the ARMA parameters by using the estimated lattice parameters with additive white noise.

  • Cell Designer: An Automatic Placement and Routing Tool for the Mixed Design of Macro and Standard Cells

    Young Seok BAEK  Byoung Yoon CHEON  Kyung Sik KIM  Hyun Chan LEE  Chul Dong LEE  

     
    PAPER-Computer Aided Design (CAD)

      Vol:
    E75-A No:2
      Page(s):
    224-232

    In this paper, we propose a new algorithm for the problem of floorplanning of the mixed design of macro and standard cells. The proposed algorithm which is based on partitioning and slicing approach, uses a modified min-cut bipartitioning heuristic. The heuristic bipartitions a block of a mixture of macro and standard cells to minimize the netcut, which are the number of nets connecting both sub-blocks, with size constraints. A sub-block is a resulting descendant block. Before starting the bipartitioning of the block, the macro cell with the longest side in the block is selected first. Using edges of the selected macro cell, bipartitionings are performed twice fixing the location of the macro cell on one of 4 corners of the block with its rotation and reflection. Bipartitioning of blocks is repeated until each block has either a macro cell or standard cells without macro cells. As a result of bipartitioning, a slicing tree is constructed. Using the proposed floorplan algorithm, we developed an automatic placement and routing tool, Cell Designer, for the mixed design of macro and standard cells. According to the floorplanner, macro cells are placed and standard cells are grouped into standard cell blocks. Standard cells are placed and routed within estimated area of block using conventional tools. They form a fixed-shaped block like a macro cell. Interconnections between the two adjacent blocks are performed with a conventional channel router. The channels and the order of channel routing are determined following the hierarchy of the slicing tree. Cell Designer has a dedicated graphics editor to provide interactive services to users. Experimental results on well-known benchmark data are shown.

  • Knowledge-Based Interaction Control of User-Model-Driven Interface System

    Tetsuo KINOSHITA  Noriyuki IWANE  Mariko OSATO  

     
    PAPER

      Vol:
    E75-A No:2
      Page(s):
    179-188

    In order to realize flexible interaction control between user and information processing system, a special purpose user model is proposed on the basis of the knowledge-based design method of user interface system. The user-specific control knowledge of user-oriented interface environment is represented explicitly in the user model and utilized in the user-oriented interface system. Furthermore, the framework of user-oriented interface environment based on this user model called user-model-driven interface system, is proposed as one of user-adaptive human interface systems, in this paper. According to the proposed framework, a prototype system of the user-model-driven interface system is implemented and the facility of user-specific interaction control based on the user model has been verified with respect to an electronic mail handling task.

  • Two-Dimensional Monte Carlo Simulation of Resonant-Tunneling Hot Electron Transistors (RHETs)

    Hiroaki OHNISHI  

     
    PAPER

      Vol:
    E75-C No:2
      Page(s):
    200-206

    In two-dimensional simulation of thin-base RHET, we combined three different simulation methods--the Schrödinger equation, the Monte Carlo simulation, and two-dimensional device simulation within a drift and diffusion model. We found that, in the thin-base RHET, the potential distribution differs from that expected from the thick-base RHET. In the thin-base RHET, the potential of the intrinsic base region does not equal that of the base electrode because the intrinsic base region is depleted and the negative emitter voltage (VEB0) raises the potential of both the intrinsic base and the nondoped region under the intrinsic base. There are also modified by the collector voltage. We also show emitter current-voltage characteristics, transfer ratio, and transit time calculated using this method and compare them with results for the one-dimensional case.

  • Three-Dimensional Evaluation of Substrate Current in Recessed-Oxide MOSFETs

    Anna PIERANTONI  Paolo CIAMPOLINI  Antonio GNUDI  Giorgio BACCARANI  

     
    PAPER

      Vol:
    E75-C No:2
      Page(s):
    181-188

    In this paper, a "hydrodynamic" version of the three-dimensional code HFIELDS-3D is used to achieve a detailed knowledge on the distribution of the substrate current inside a recessed-oxide MOSFET. The physical model features a temperature-dependent formulation of the impact-ionization rate, allowing non-local effects to be accounted for. The discretization strategy relies on the Box Integration scheme and uses suitable generalizations of the Scharfetter-Gummel technique for the energy-balance equation. The simulation results show that the narrow-channel effect has a different impact on drain and substrate currents. Further three-dimensional effects, such as the extra heating of the carriers at the channel edge, are demonstrated.

  • Speech Coding and Recognition: A Review

    Andreas S. SPANIAS  Frank H. WU  

     
    PAPER

      Vol:
    E75-A No:2
      Page(s):
    132-148

    The objective of this paper is to provide an overview of the recent developments in the area of speech processing and in particular in the fields of speech coding and speech recognition. The speech coding review covers DPCM coders, model-based vocoders, waveform coders, and hybrid coders. The hybrid coders are described in some detail since they are the subject of current research. Our treatment of speech recognition techniques concentrates on the methodologies for voice recognition and the progress made in speaker independent recognition. In addition, we describe the efforts towards commercial deployment of this technology.

  • Numerical Techniques on Enhancing Robustness for Stress-Dependent Oxidation Simulation Using Finite Element Method in SUPREM-IV

    Yoshinori ODA  Kaung-Shia YU  Thye-Lai TUNG  Arthur RAEFSKY  Donald L. SCHARFETTER  Robert W. DUTTON  

     
    PAPER

      Vol:
    E75-C No:2
      Page(s):
    150-155

    In this paper, a three part algorithm is employed to obtain stable convergence during stress dependent oxidation simulation using the finite element method is presented. By introducing (1) a reduced integration formulation, (2) an averaging procedure for the mid-side node velocities at the Si/SiO2 interface, and (3) a three-node element to discretize the oxidant diffusion equation, major improvements in achieving stable convergence are realized during stress dependent oxidation simulation. This technique is generally applicable for an oxidation simulator using the finite element method.

  • 1/5 Power Law in PN-Junction Failure Mechanism Caused by Electrical-Over-Stress

    Yutaka TAJIMA  Kunihiro ASADA  Takuo SUGANO  

     
    PAPER

      Vol:
    E75-C No:2
      Page(s):
    207-215

    We have developed a new model to analyze the thermal failure mechanism due to electrical-over-stress (EOS) for two-dimensional planar pn-junction structures where the failure power is proportional to about 1/5 power of the failure time. We adopted a pseudo two-dimensional numerical simulation method where a pn-junction diode is divided into small elements and represented by a circuit network composed of many minute resistors and diodes. The failure mechanism studied by Wunsch and Bell, that is one of many studies for one-dimensional pn-diodes, is not valid for the case of two-dimensional pn-junction, such as a planar type junction. On the contrary, the failure mechanism was found to be much correlative with the junction structure, especially the impurity concentration in the substrate in the two-dimensional case. When the impurity concentration in the substrate is high enough (e.g. Nsub1017[cm-3]), the breakdown occurs at the whole junction. The heat transfer is one-dimensional and the failure power is proportional to about 1/2 power of the failure time, which is well known results reported by many researchers: e.g. Wunsch &Bell. On the other hand, when the impurity concentration in the substrate is low enough (e.g. Nsub1016[cm-3]), the breakdown occurs locally at the junction edge. The heat transfer is two-dimensional and the failure power is in proportion to about 1/5 power of the failure time.

  • Evaluation of the Point Defect Bulk Recombination Rate by Ion Implantation at High Temperatures

    Peter PICHLER  Rainer SCHORK  Thomas KLAUSER  Heiner RYSSEL  

     
    PAPER

      Vol:
    E75-C No:2
      Page(s):
    128-137

    In recent years, ion implantation has become one of the key techniques in semiconductor fabrication. The annealing of the damage produced during implantation is, however, not fully understood. Ion implantation at high temperatures allows the time-resolved study of implantation-enhanced diffusion. During the process, point defects are generated by the ion implantation and consumed by recombination in the bulk as well as by diffusion to the surface and recombination there. With increasing temperatures, the recombination of point defects, which are acting as diffusion vehicles, results in reduced effective diffusion. Profiles processed above 900 show marked uphill diffusion at the surface caused by large gradients of the point defect concentrations. This uphill diffusion affirms the generally accepted pair diffusion theories. Since the point defects are in steady state even after process times which are short compared to the total process time, we are able to give a qualitative analysis of the dose dependence of the diffusion. By extensive numerical simulations, we could estimate the product of bulk recombination rate and equilibrium concentrations of self-interstitials and vacancies as well as the interface recombination velocity for the self-interstitials. The results obtained are in qualitative agreement with previous work of others. The results demonstrate, in fact, clearly the advantages of the method presented. But due to experimental problems concerning the temperature measurement, which have not been fully resolved up to now, the results have to be considered as crude estimates.

  • An Improved Bandgap Narrowing Model Based on Corrected Intrinsic Carrier Concentration

    Naoyuki SHIGYO  Noritoshi KONISHI  Hideki SATAKE  

     
    PAPER

      Vol:
    E75-C No:2
      Page(s):
    156-160

    We present a new apparent bandgap narrowing model for semiconductor device simulation. The new model is derived from revised data of previous measurements on the apparent bandgap narrowing by using a corrected intrinsic carrier concentration. The revised values reveal sufficient agreement with our theoretical calculation. The new model is implemented in a triangular mesh device simulator TRIMEDES. Simulated BJT current-voltage and current-temperature characteristics using the proposed model reveal excellent agreement with measurements.

  • Simulation of Stress Redistribution on LOCOS Structure during Oxidation and Subsequent Cooling Down

    Shigeki KURODA  Kenji NISHI  

     
    PAPER

      Vol:
    E75-C No:2
      Page(s):
    145-149

    This paper is concerned with the stress simulation of a LOCOS structure during not only oxidation but also the subsequent cooling down based on viscoelastic stress modeling. A viscoelastic model is successfully applied to the oxide, nitride and silicon substrate for a LOCOS structure. Thermal stress is also taken into account during the cooling down process. The viscoelastic deformation problem of all the three materials for the LOCOS structure are solved by a two-dimensional finite element method. It is the first time to show that the stress values after cooling down to room temperature are much higher than those right after oxidation. It is also shown that varying the cooling down rates results in the different stress values after cooling down.

  • Prosodic Control to Express Emotions for Man-Machine Speech Interaction

    Yoshinori KITAHARA  Yoh'ichi TOHKURA  

     
    PAPER

      Vol:
    E75-A No:2
      Page(s):
    155-163

    In speech output expected as an ideal man-machine interface, there exists an important issue on emotion production in order to not only improve its naturalness but also achieve more sophisticated speech interaction between man and machine. Speech has two aspects, which are prosodic information and phonetic feature. For the purpose of application to natural and high quality speech synthesis, the role of prosody in speech perception has been studied. In this paper, prosodic components, which contribute to the expression of emotions and their intensity, are clarified by analyzing emotional speech and by conducting listening tests of synthetic speech. The analysis is performed by substituting the components of neutral speech (i.e., one with no particular emotion) with those of emotional speech preserving the temporal correspondence by means of DTW. It has been confirmed that prosodic components, which are composed of pitch structure, temporal structure and amplitude structure, contribute to the expression of emotions more than the spectral structure of speech. The results of listening tests using prosodic substituted speech show that temporal structure is the most important for the expression of anger, while all of three components are much more important for the intensity of anger. Pitch structure also plays a significant role in the expression of joy and sadness and their intensity. These results make it possible to convert neutral utterances into utterances expressing various emotions. The results can also be applied to controlling the emotional characteristics of speech in synthesis by rule.

  • Electromagnetic Interference and Countermeasures on Metallic Lines for ISDN

    Mitsuo HATTORI  Tsuyoshi IDEGUCHI  

     
    PAPER-Electromagnetic Compatibility

      Vol:
    E75-B No:1
      Page(s):
    50-56

    Electromagnetic interference on a bus wiring configuration of the ISDN basic interface using metallic telecommunication lines is studied. A simple circuit to simulate terminal equipment unbalance about earth is developed for measurement purposes, based on the fact that the unbalance weakens the withstanding capability against interference. The electromagnetic interferences from low-voltage supply lines, analog telephone lines and broadcasting waves are evaluated by experiments using the circuit. The interference is measured by both induced voltage on the interface line and the error rate of the transmission signal line. Consequently, it is clarified that the basic interface is disturbed by the induced voltage, because the terminal equipment in the CCITT Recommendation I.430 has too large an unbalance about earth to maintain transmission quality. Adding to this, countermeasures to reduce interference are proposed.

  • Knowledge-Based Protocol Design for Computer Communication Systems

    Tetsuo KINOSHITA  Kenji SUGAWARA  Norio SHIRATORI  

     
    PAPER-Artificial Intelligence and Cognitive Science

      Vol:
    E75-D No:1
      Page(s):
    156-169

    This paper proposes a knowledge-based design method of a protocol of a communication network system based on the knowledge-based design methodology for computer communication systems. In the proposed method, two knowledge models, i.e., the communication network architecture model (CNAM) and the communication protocol architecture model (CPAM), are introduced and a protocol design task is modeled as a successive transformation process of these knowledge models. Giving CNAM which represents the users' requirements concerning a communication network system, the requirements specification of a protocol is derived from CNAM and represented as CPAM. Then, the detailed requirements specification of a protocol is also derived from CPAM and represented by the formal description technique (FDT-Expressions). The derivations of CPAM and FDT-Expressions are executed by the transformation rules which represent the mappings between knowledge models. Due to formally defined knowledge models and mappings, the proposed method provides a framework of a systematic support of knowledge-based protocol design. In this paper, the formal definitions of CNAM and CPAM are given, then the derivation process of FDT-Expressions of a protocol is also formalized based on these knowledge models. Furthermore, a design example is demonstrated by using LOTOS as one of the FDT-Expressions of a protocol.

  • Future Perspective of Automatic Telephone Interpretation

    Akira KUREMATSU  

     
    INVITED PAPER

      Vol:
    E75-B No:1
      Page(s):
    14-19

    This paper describes the future perspective of automatic telephone interpretation using a multimedia intelligent communication network. The need for language interpretation over a telecommunication system creates a strong drive toward integrating information modalities for voice, image, data, computation and conferencing into modern systems using the capability of language interpretation. An automatic telephone interpretation system will solve the problems of language differences in international human-to-human communication. The future prospective of advanced multimedia language communication will be stated as the versatile application of an integrated intelligent network.

  • Effects of Line Resistance and Parasitic Capacitance on Transmittance Distribution in TFT-LCDs

    Kikuo ONO  Takeshi TANAKA  Jun OHIDA  Junichi OHWADA  Nobutake KONISHI  

     
    PAPER-Electronic Displays

      Vol:
    E75-C No:1
      Page(s):
    93-100

    Transmittance distribution along a horizontal line in LCDs addressed by amorphous silicon TFTs was investigated using measurements and calculations. Nonuniformity of the distribution, in which the transmittance increased with increasing distance from the left edge of the LCD, was observed in a 10 inch diagonal TFT-LCD. The cause of the nonuniformity was attributed to the decrease in voltage drop due to the gate source parasitic capacitance and the increase in gate voltage fall time due to large line resistance, based on the measurements of voltage drops in TFT test elements and calculations considering the decrease in voltage drop. The distribution could be improved by reducing the line resistance and parasitic capacitance in the actual LCD.

  • Transient Electromagnetic Fields on a Conducting Sphere Excited by a Pulsed Plane Wave

    Akira ITOH  Toshio HOSONO  Yuuiti HIRAO  

     
    PAPER-Electromagnetic Theory

      Vol:
    E75-C No:1
      Page(s):
    107-112

    We studied transient fields on a perfectly conducting sphere excited by a half sine pulse wave and examined the Poynting vectors, the energy densities and the energy velocities of the creeping waves. We used FILT (Fast Inversion of Laplace Transform) method for transient analysis. We compared the amplitudes of the creeping wave with that of steady state high frequency approximation obtained by the Watson transformation. The main results are: (1) We confirmed in the transient response that the pulse propagates clockwise and counterclockwise along the geodesic circumference. (2) In the transient electromagnetic field observed in the E-plane we can recognize creeping waves clearly. (3) The existence of creeping waves is not clear in the H-plane. (4) The pulse wave propagation on the sphere is seen more clearly from the Poynting vectors and the energy densities than the field components. (5) The energy velocity of the wave front is equal to the light velocity as should be. The energy velocity of the wave body becomes smaller with the passage of time. (6) The amplitude of the creeping wave for a beat pulse and the amplitude obtained by the Watson transform for mono spectrum agree in the order of relative error below 25%.

  • Optical Stimulated Amplification and Absorption in Erbium-Doped Fiber

    Guoli YIN  Xianglin YANG  Mingde ZHANG  

     
    PAPER-Opto-Electronics

      Vol:
    E75-C No:1
      Page(s):
    90-92

    Based on the semiclassical theory, we deduce the expressions of stimulated absorption, stimulated amplification and threshold by using density matrix equation in the Er3+-doped fibers. Meaningful results have been given and some phenomena occuring in experiments are explained theoretically.

16281-16300hit(16314hit)