The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SI(16314hit)

1701-1720hit(16314hit)

  • Efficient Hybrid DOA Estimation for Massive Uniform Linear Array

    Wei JHANG  Shiaw-Wu CHEN  Ann-Chen CHANG  

     
    LETTER-Digital Signal Processing

      Vol:
    E102-A No:5
      Page(s):
    721-724

    This letter presents an efficient hybrid direction of arrival (DOA) estimation scheme for massive uniform linear array. In this scheme, the DOA estimator based on a discrete Fourier transform (DFT) is first applied to acquire coarse initial DOA estimates for single data snapshot. And then, the fine DOA is accurately estimated through using the iterative search estimator within a very small region. It iteratively searches for correct DOA vector by minimizing the objective function using a Taylor series approximation of the DOA vector with the one initially estimated. Since the proposed scheme does not need to perform eigen-decomposition and spectrum search while maintaining better DOA estimates, it also has low complexity and real-time capability. Simulation results are presented to demonstrate the efficiency of the proposed scheme.

  • Multi-Target Classification Based Automatic Virtual Resource Allocation Scheme

    Abu Hena Al MUKTADIR  Takaya MIYAZAWA  Pedro MARTINEZ-JULIA  Hiroaki HARAI  Ved P. KAFLE  

     
    PAPER

      Pubricized:
    2019/02/19
      Vol:
    E102-D No:5
      Page(s):
    898-909

    In this paper, we propose a method for automatic virtual resource allocation by using a multi-target classification-based scheme (MTCAS). In our method, an Infrastructure Provider (InP) bundles its CPU, memory, storage, and bandwidth resources as Network Elements (NEs) and categorizes them into several types in accordance to their function, capabilities, location, energy consumption, price, etc. MTCAS is used by the InP to optimally allocate a set of NEs to a Virtual Network Operator (VNO). Such NEs will be subject to some constraints, such as the avoidance of resource over-allocation and the satisfaction of multiple Quality of Service (QoS) metrics. In order to achieve a comparable or higher prediction accuracy by using less training time than the available ensemble-based multi-target classification (MTC) algorithms, we propose a majority-voting based ensemble algorithm (MVEN) for MTCAS. We numerically evaluate the performance of MTCAS by using the MVEN and available MTC algorithms with synthetic training datasets. The results indicate that the MVEN algorithm requires 70% less training time but achieves the same accuracy as the related ensemble based MTC algorithms. The results also demonstrate that increasing the amount of training data increases the efficacy ofMTCAS, thus reducing CPU and memory allocation by about 33% and 51%, respectively.

  • Interference Suppression of Partially Overlapped Signals Using GSVD and Orthogonal Projection

    Liqing SHAN  Shexiang MA  Xin MENG  Long ZHOU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2018/11/21
      Vol:
    E102-B No:5
      Page(s):
    1055-1060

    In order to solve the problem in Automatic Identification System (AIS) that the signal in the target slot cannot be correctly received due to partial overlap of signals in adjacent time slots, the paper introduces a new criterion: maximum expected signal power (MESP) and proposes a novel beamforming algorithm based on generalized singular value decomposition (GSVD) and orthogonal projection. The algorithm employs GSVD to estimate the signal subspace, and adopts orthogonal projection to project the received signal onto the orthogonal subspace of the non-target signal. Then, beamforming technique is used to maximize the output power of the target signal on the basis of MESP. Theoretical analysis and simulation results show the effectiveness of the proposed algorithm.

  • Ultra-Low-Power Class-AB Bulk-Driven OTA with Enhanced Transconductance

    Seong Jin CHOE  Ju Sang LEE  Sung Sik PARK  Sang Dae YU  

     
    BRIEF PAPER-Electronic Circuits

      Vol:
    E102-C No:5
      Page(s):
    420-423

    This paper presents an ultra-low-power class-AB bulk-driven operational transconductance amplifier operating in the subthreshold region. Employing the partial positive feedback in current mirrors, the effective transconductance and output voltage swing are enhanced considerably without additional power consumption and layout area. Both traditional and proposed OTAs are designed and simulated for a 180 nm CMOS process. They dissipate an ultra low power of 192 nW. The proposed OTA features not only a DC gain enhancement of 14 dB but also a slew rate improvement of 200%. In addition, the improved gain leads to a 5.3 times wider unity-gain bandwidth than that of the traditional OTA.

  • Quantum Algorithm on Logistic Regression Problem

    Jun Suk KIM  Chang Wook AHN  

     
    LETTER-Fundamentals of Information Systems

      Pubricized:
    2019/01/28
      Vol:
    E102-D No:4
      Page(s):
    856-858

    We examine the feasibility of Deutsch-Jozsa Algorithm, a basic quantum algorithm, on a machine learning-based logistic regression problem. Its major property to distinguish the function type with an exponential speedup can help identify the feature unsuitability much more quickly. Although strict conditions and restrictions to abide exist, we reconfirm the quantum superiority in many aspects of modern computing.

  • InP-Based Photodetectors Monolithically Integrated with 90° Hybrid toward Over 400Gb/s Coherent Transmission Systems Open Access

    Hideki YAGI  Takuya OKIMOTO  Naoko INOUE  Koji EBIHARA  Kenji SAKURAI  Munetaka KUROKAWA  Satoru OKAMOTO  Kazuhiko HORINO  Tatsuya TAKEUCHI  Kouichiro YAMAZAKI  Yoshifumi NISHIMOTO  Yasuo YAMASAKI  Mitsuru EKAWA  Masaru TAKECHI  Yoshihiro YONEDA  

     
    INVITED PAPER

      Vol:
    E102-C No:4
      Page(s):
    347-356

    We present InP-based photodetectors monolithically integrated with a 90° hybrid toward over 400Gb/s coherent transmission systems. To attain a wide 3-dB bandwidth of more than 40GHz for 400Gb/s dual-polarization (DP)-16-ary quadrature amplitude modulation (16QAM) and 600Gb/s DP-64QAM through 64GBaud operation, A p-i-n photodiode structure consisting of a GaInAs thin absorption and low doping n-typed InP buffer layers was introduced to overcome the trade-off between short carrier transit time and low parasitic capacitance. Additionally, this InP buffer layer contributes to the reduction of propagation loss in the 90° hybrid waveguide, that is, this approach allows a high responsivity as well as wide 3-dB bandwidth operation. The coherent receiver module for the C-band (1530nm - 1570nm) operation indicated the wide 3-dB bandwidth of more than 40GHz and the high receiver responsivity of more than 0.070A/W (Chip responsivity within the C-band: 0.130A/W) thanks to photodetectors with this photodiode design. To expand the usable wavelengths in wavelength-division multiplexing toward large-capacity optical transmission, the photodetector integrated with the 90° hybrid optimized for the L-band (1565nm - 1612nm) operation was also fabricated, and exhibited the high responsivity of more than 0.120A/W over the L-band. Finally, the InP-based monolithically integrated photonic device consisting of eight-channel p-i-n photodiodes, two 90° hybrids and a beam splitter was realized for the miniaturization of modules and afforded the reduction of the total footprint by 70% in a module compared to photodetectors with the 90° hybrid and four-channel p-i-n photodiodes.

  • Multilevel Signaling Technology for Increasing Transmission Capacity in High-Speed Short-Distance Optical Fiber Communication Open Access

    Nobuhiko KIKUCHI  

     
    INVITED PAPER

      Vol:
    E102-C No:4
      Page(s):
    316-323

    The needs for ultra-high speed short- to medium-reach optical fiber links beyond 100-Gbit/s is becoming larger and larger especially for intra and inter-data center applications. In recent intensity-modulated/direct-detection (IM/DD) high-speed optical transceivers with the channel bit rate of 50 and/or 100 Gbit/s, multilevel pulse amplitude modulation (PAM) is finally adopted to lower the signaling speed. To further increase the transmission capacity for the next-generation optical transceivers, various signaling techniques have been studied, especially thanks to advanced digital signal processing (DSP). In this paper, we review various signaling technologies proposed so far for short-to-medium reach applications.

  • Efficient Dynamic Malware Analysis for Collecting HTTP Requests using Deep Learning

    Toshiki SHIBAHARA  Takeshi YAGI  Mitsuaki AKIYAMA  Daiki CHIBA  Kunio HATO  

     
    PAPER

      Pubricized:
    2019/02/01
      Vol:
    E102-D No:4
      Page(s):
    725-736

    Malware-infected hosts have typically been detected using network-based Intrusion Detection Systems on the basis of characteristic patterns of HTTP requests collected with dynamic malware analysis. Since attackers continuously modify malicious HTTP requests to evade detection, novel HTTP requests sent from new malware samples need to be exhaustively collected in order to maintain a high detection rate. However, analyzing all new malware samples for a long period is infeasible in a limited amount of time. Therefore, we propose a system for efficiently collecting HTTP requests with dynamic malware analysis. Specifically, our system analyzes a malware sample for a short period and then determines whether the analysis should be continued or suspended. Our system identifies malware samples whose analyses should be continued on the basis of the network behavior in their short-period analyses. To make an accurate determination, we focus on the fact that malware communications resemble natural language from the viewpoint of data structure. We apply the recursive neural network, which has recently exhibited high classification performance in the field of natural language processing, to our proposed system. In the evaluation with 42,856 malware samples, our proposed system collected 94% of novel HTTP requests and reduced analysis time by 82% in comparison with the system that continues all analyses.

  • Secure Communication Using Scramble Phase Assisting WFRFT

    Yuan LIANG  Xinyu DA  Ruiyang XU  Lei NI  Dong ZHAI  Yu PAN  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2018/10/03
      Vol:
    E102-B No:4
      Page(s):
    779-789

    In this paper, a scramble phase assisting weighted-type fractional Fourier transform (SPA-WFRFT) based system is proposed to guarantee the communication's security. The original transmitting signal is divided into two parts. The first part is modulated by WFRFT and subsequently makes up the constellation beguiling. The other part is used to generate the scramble phase and also to assist in the encryption of the WFRFT modulated signal dynamically. The novel constellation optimal model is built and solved through the genetic algorithm (GA) for the constellation beguiling. And the double pseudo scheme is implemented for the scramble phase generation. Theoretical analyses show that excellent security performances and high spectral efficiency can be attained. Final simulations are carried out to evaluate the performances of the SPA-WFRFT based system, and demonstrate that the proposed system can effectively degrade the unauthorized receivers' bit error rate (BER) performance while maintaining its own communication quality.

  • Compaction of Topological Quantum Circuits by Modularization

    Kota ASAI  Shigeru YAMASHITA  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E102-A No:4
      Page(s):
    624-632

    A topological quantum circuit is a representation model for topological quantum computation, which attracts much attention recently as a promising fault-tolerant quantum computation model by using 3D cluster states. A topological quantum circuit can be considered as a set of “loops,” and we can transform the topology of loops without changing the functionality of the circuit if the transformation satisfies certain conditions. Thus, there have been proposed many researches to optimize topological quantum circuits by transforming the topology. There are two directions of research to optimize topological quantum circuits. The first group of research considers so-called a placement and wiring problem where we consider how to place “parts” in a 3D space which corresponds to already optimized sub-circuits. The second group of research focuses on how to optimize the structure and locations of loops in a relatively small circuit which is treated as one part in the above-mentioned first group of research. This paper proposes a new idea for the second group of research; our idea is to consider topological transformations as a placement and wiring problem for modules which we derive from the information how loops are crossed. By using such a formulation, we can use the techniques for placement and wiring problems, and successfully obtain an optimized solution. We confirm by our experiment that our method indeed can reduce the cost much more than the method by Paetznick and Fowler.

  • Rigorous Analytical Model of Saturated Throughput for the IEEE 802.11p EDCA

    Shintaro IKUMA  Zhetao LI  Tingrui PEI  Young-June CHOI  Hiroo SEKIYA  

     
    PAPER

      Pubricized:
    2018/10/15
      Vol:
    E102-B No:4
      Page(s):
    699-707

    The IEEE 802.11p Enhanced Distributed Channel Access (EDCA) is a standardization for vehicle-to-vehicle and road-to-vehicle communications. The saturated throughputs of the IEEE 802.11p EDCA obtained from previous analytical expressions differ from those of simulations. The purpose of this paper is to explain the reason why the differences appear in the previous analytical model of the EDCA. It is clarified that there is a special state wherein the Backoff Timer (BT) is decremented in the first time slot of after a frame transmission, which cannot be expressed in the previous Markov model. In addition, this paper proposes modified Markov models, which allow the IEEE 802.11p EDCA to be correctly analyzed. The proposed models describe BT-decrement procedure in the first time slot accurately by adding new states to the previous model. As a result, the proposed models provide accurate transmission probabilities of network nodes. The validity of the proposed models is confirmed by the quantitative agreements between analytical predictions and simulation results.

  • Recent Progress in the Development of Large-Capacity Integrated Silicon Photonics Transceivers Open Access

    Yu TANAKA  

     
    INVITED PAPER

      Vol:
    E102-C No:4
      Page(s):
    357-363

    We report our recent progress in silicon photonics integrated device technology targeting on-chip-level large-capacity optical interconnect applications. To realize high-capacity data transmission, we successfully developed on-package-type silicon photonics integrated transceivers and demonstrated simultaneous 400 Gbps operation. 56 Gbps pulse-amplitude-modulation (PAM) 4 and wavelength-division-multiplexing technologies were also introduced to enhance the transmission capacity.

  • High-Sensitivity Optical Receiver Using Differential Photodiodes AC-Coupled with a Transimpedance Amplifier

    Daisuke OKAMOTO  Hirohito YAMADA  

     
    PAPER-Optoelectronics

      Vol:
    E102-C No:4
      Page(s):
    380-387

    To address the bandwidth bottleneck that exists between LSI chips, we have proposed a novel, high-sensitivity receiver circuit for differential optical transmission on a silicon optical interposer. Both anodes and cathodes of the differential photodiodes (PDs) were designed to be connected to a transimpedance amplifier (TIA) through coupling capacitors. Reverse bias voltage was applied to each of the differential PDs through load resistance. The proposed receiver circuit achieved double the current signal amplitude of conventional differential receiver circuits. The frequency response of the receiver circuit was analyzed using its equivalent circuit, wherein the temperature dependence of the PD was implemented. The optimal load resistances of the PDs were determined to be 5kΩ by considering the tradeoff between the frequency response and bias voltage drop. A small dark current of the PD was important to reduce the voltage drop, but the bandwidth degradation was negligible if the dark current at room temperature was below 1µA. The proposed circuit achieved 3-dB bandwidths of 18.9 GHz at 25°C and 13.7 GHz at 85°C. Clear eye openings in the TIA output waveforms for 25-Gbps 27-1 pseudorandom binary sequence signals were obtained at both temperatures.

  • Information Dissemination Using MANET for Disaster Evacuation Support Open Access

    Tomoyuki OHTA  Masahiro NISHI  Toshikazu TERAMI  Yoshiaki KAKUDA  

     
    INVITED PAPER

      Pubricized:
    2018/10/15
      Vol:
    E102-B No:4
      Page(s):
    670-678

    To minimize the damage caused by landslides resulting from torrential rain, residents must quickly evacuate to a place of refuge. To make the decision to evacuate, residents must be able to collect and share disaster information. Firstly, this paper introduces the Grass-roots Information Distribution System and a fixed type monitoring system which our research group has been developing. The fixed type monitoring system is deployed at the location of apparent danger, whereas the Grass-roots Information Distribution System distributes disaster information acquired from the fixed type monitoring system through a mobile ad hoc network (MANET) to residents. The MANET is configured using mobile terminals of residents. Next, in this paper, an information dissemination scheme utilizing a MANET and cellular networks to communicate among mobile terminals is proposed and simulated in the area where our research group has been deploying the distribution system. The MANET topology and information distribution obtained from the simulation results for further field experiments are then discussed.

  • Simplified Iterative Decoder for Polybinary-Shaped Optical Signals in Super-Nyquist Wavelength Division Multiplexed Systems

    Shuai YUAN  Koji IGARASHI  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2018/10/11
      Vol:
    E102-B No:4
      Page(s):
    818-823

    In super-Nyquist wavelength division multiplexed systems, performance of forward error correction (FEC) can be improved by an iterative decoder between a maximum likelihood decoder for polybinary shaping and an FEC decoder. The typical iterative decoder includes not only the iteration between the first and second decoders but also the internal iteration within the FEC decoder. Such two-fold loop configuration would increase the computational complexity for decoding. In this paper, we propose the simplified iterative decoder, where the internal iteration in the FEC decoder is not performed, reducing the computational complexity. We numerically evaluate the bit-error rate performance of polybinary-shaped QPSK signals in the simplified iterative decoder. The numerical results show that the FEC performance can be improved in the simplified scheme, compared with the typical iterative decoder. In addition, the performance of the simplified iterative decoder has been investigated by the extrinsic information transfer (EXIT) chart.

  • Periodic Reactance Time Functions for 2-Element ESPAR Antennas Applied to 2-Output SIMO/MIMO Receivers

    Kosei KAWANO  Masato SAITO  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2018/10/22
      Vol:
    E102-B No:4
      Page(s):
    930-939

    In this paper, we propose a periodic reactance time function for 2-element electronically steerable passive array radiator (ESPAR) antennas applicable to the receivers of both single-input multiple-output (SIMO) and multiple-input multiple-output (MIMO) systems with 2 outputs. Based on the proposed function, we evaluate the power patterns of the antenna for various distances between two antenna elements. Moreover, for the distances, we discuss the correlation properties and the strength of the two outputs to find the appropriate distance for the receiver. From the discussions, we can conclude that distances from 0.1 to 0.35 times the wavelength are effective in terms of receive diversity.

  • Near-Field Chipless RFID Tag System Using Inductive Coupling Between a Multimode Resonator and Detection Probes

    Fuminori SAKAI  Mitsuo MAKIMOTO  Koji WADA  

     
    PAPER

      Pubricized:
    2018/10/15
      Vol:
    E102-B No:4
      Page(s):
    722-731

    Chipless RFID tags that use the higher-mode resonances of a transmission line resonator are presented in this paper. We have proposed multimode stepped impedance resonators (SIRs) for this application and reported the fundamental characteristics of an experimental system composed of multimode SIRs with open-circuited ends and a near-field electromagnetic detector using capacitive coupling (electric field) probes for the detector. To improve the frequency response and widen the detection range, we introduced multimode SIRs with short-circuited ends and inductive coupling (magnetic field) probes and measured their properties. To reduce the size of the tag and reader, we examined the frequency responses and found that the optimal configuration consisted of C-shaped tags and detector probes with a spatially orthogonal arrangement. The experimental tag system showed good frequency responses, detection range, and frequency detection accuracy. In particular, the spacing between the tag resonator and the transmission line of the probe, which corresponds to the detection distance, was 5mm or more, and was at least 10 times greater than that of previously reported RFID tag systems using near-field electromagnetic coupling.

  • A Highly Accurate Transportation Mode Recognition Using Mobile Communication Quality

    Wataru KAWAKAMI  Kenji KANAI  Bo WEI  Jiro KATTO  

     
    PAPER

      Pubricized:
    2018/10/15
      Vol:
    E102-B No:4
      Page(s):
    741-750

    To recognize transportation modes without any additional sensor devices, we demonstrate that the transportation modes can be recognized from communication quality factors. In the demonstration, instead of using global positioning system (GPS) and accelerometer sensors, we collect mobile TCP throughputs, received-signal strength indicators (RSSIs), and cellular base-station IDs (Cell IDs) through in-line network measurement when the user enjoys mobile services, such as video streaming. In accuracy evaluations, we conduct two different field experiments to collect the data in six typical transportation modes (static, walking, riding a bicycle, riding a bus, riding a train and riding a subway), and then construct the classifiers by applying a support-vector machine (SVM), k-nearest neighbor (k-NN), random forest (RF), and convolutional neural network (CNN). Our results show that these transportation modes can be recognized with high accuracy by using communication quality factors as well as the use of accelerometer sensors.

  • Non-Orthogonal Pilot Analysis for Single-Cell Massive MIMO Circumstances

    Pengxiang LI  Yuehong GAO  Zhidu LI  Hongwen YANG  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2018/10/05
      Vol:
    E102-B No:4
      Page(s):
    901-912

    This paper analyzes the performance of single-cell massive multiple-input multiple-output (MIMO) systems with non-orthogonal pilots. Specifically, closed-form expressions of the normalized channel estimation error and achievable uplink capacity are derived for both least squares (LS) and minimum mean square error (MMSE) estimation. Then a pilot reconstruction scheme based on orthogonal Procrustes principle (OPP) is provided to reduce the total normalized mean square error (NMSE) of channel estimations. With these reconstructed pilots, a two-step pilot assignment method is formulated by considering the correlation coefficient among pilots to reduce the maximum NMSE. Based on this assignment method, a step-by-step pilot power allocation scheme is further proposed to improve the average uplink signal-to-interference and noise ratio (SINR). At last, simulation results demonstrate the superiority of the proposed approaches.

  • Transmit Beam Selection Scheme for Massive MIMO Using Expected Beam Responses

    Yoshihito KUBO  Yukitoshi SANADA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2018/10/12
      Vol:
    E102-B No:4
      Page(s):
    913-920

    Massive multiple-input multiple-output (MIMO) realizes simultaneous transmission to a large number of mobile stations (MSs) and improves frequency utilization efficiency. It is drawing attention as the key technology of the fifth-generation (5G) mobile communication systems. The 5G system is going to be implemented in a high frequency band and massive MIMO beamforming (BF) is applied to compensate propagation loss. In the conventional BF scheme, a transmit beam is selected based on the power of received signals over subcarriers. The signal on a different subcarrier is transmitted with a different directivity. To improve the accuracy of beam selection, this paper proposes a transmit beam selection scheme for massive MIMO. The proposed scheme calculates the expected responses of the signals over the subcarriers based on the relative directivity between a base station (BS) and a MS. The MS calculates the correlation between the received signals and each of the expected response sequences. It then selects the beam with the highest correlation value. It is shown in this paper that the proposed scheme can improve the average signal-to-noise ratio of a received signal by about 1.5dB as compared with that of the power based search scheme. It is also shown that the proposed scheme with limited response coefficients can reduce the computational complexity by a factor of 1/100 while it still increases the average SNR by about 1.0dB.

1701-1720hit(16314hit)