The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SI(16314hit)

1781-1800hit(16314hit)

  • How to Select TDOA-Based Bearing Measurements for Improved Passive Triangulation Localization

    Kyu-Ha SONG  San-Hae KIM  Woo-Jin SONG  

     
    LETTER-Measurement Technology

      Vol:
    E102-A No:2
      Page(s):
    490-496

    When time difference of arrival (TDOA)-based bearing measurements are used in passive triangulation, the accuracy of localization depends on the geometric relationship between the emitter and the sensors. In particular, the localization accuracy varies with the geometric conditions in TDOA-based direction finding (DF) for bearing measurement and lines of bearing (LOBs) crossing for triangulation. To obtain an accurate estimate in passive triangulation using TDOA-based bearing measurements, we shall use these bearings selectively by considering geometric dilution of precision (GDOP) between the emitter and the sensors. To achieve this goal, we first define two GDOPs related to TDOA-based DF and LOBs crossing geometries, and then propose a new hybrid GDOP by combining these GDOPs for a better selection of bearings. Subsequently, two bearings with the lowest hybrid GDOP condition are chosen as the inputs to a triangulation localization algorithm. In simulations, the proposed method shows its enhancement to the localization accuracy.

  • Hole Transport Property of α-phenyl-4'-(diphenylamino)stilbene Single Crystal Prepared Based on Solubility and Supersolubility Curves

    Mitsuhiko KATAGIRI  Shofu MATSUDA  Norio NAGAYAMA  Minoru UMEDA  

     
    PAPER

      Vol:
    E102-C No:2
      Page(s):
    132-137

    We describe the preparation of an α-phenyl-4'-(diphenylamino)stilbene (TPA) single crystal and the evaluation of its hole transport property. Based on the characterization using optical microscopy, polarizing microscopy, and X-ray diffraction, a large-scale TPA single crystal of dimensions 7.0×0.9×0.8mm is successfully synthesized using a solution method based on the solubility and supersolubility curves of the TPA. Notably, the current in the long-axis direction is larger than those in the short-axis and thickness directions (i(long) > i(short) > i(thickness)), which reveals the anisotropic charge transfer of the TPA single crystal. The observed anisotropic conductivity is well explained by the orientation of the triphenylamine unit in the TPA single crystal. Furthermore, the activation energy of the long-axis direction in the TPA single crystal is lower than that of the short-axis in TPA and all the axes in the α-phenyl-4'-[bis(4-methylphenyl)amino]stilbene single crystal reported in our previous study.

  • Gap States of a Polyethylene Model Oligomer Observed by Using High-Sensitivity Ultraviolet Photoelectron Spectroscopy

    Yuki YAMAGUCHI  Kohei SHIMIZU  Atsushi MATSUZAKI  Daisuke SANO  Tomoya SATO  Yuya TANAKA  Hisao ISHII  

     
    BRIEF PAPER

      Vol:
    E102-C No:2
      Page(s):
    168-171

    The gap states of tetratetracontane (C44H90; TTC), which is a model oligomer of polyethylene, was examined by using high-sensitivity UV photoemission spectroscopy (HS-UPS). The high sensitivity enabled us to directly observe the weak gap states distributed in the HOMO-LUMO gap from the valence band top to 3.0 eV below the vacuum level. On the basis of the density-of-states derived from UPS results, the tribocharging nature of polyethylene was discussed in comparison with our previous result for nylon-6,6 film.

  • Energy Efficient Resource Allocation Algorithm for Massive MIMO Systems Based on Wireless Power Transfer

    Xiao-yu WAN  Xiao-na YANG  Zheng-qiang WANG  Zi-fu FAN  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2018/08/13
      Vol:
    E102-B No:2
      Page(s):
    351-358

    This paper investigates energy-efficient resource allocation problem for the wireless power transfer (WPT) enabled multi-user massive multiple-input multiple-output (MIMO) systems. In the considered systems, the sensor nodes (SNs) are firstly powered by WPT from the power beacon (PB) with a large scale of antennas. Then, the SNs use the harvested energy to transmit the data to the base station (BS) with multiple antennas. The problem of optimizing the energy efficiency objective is formulated with the consideration of maximum transmission power of the PB and the quality of service (QoS) of the SNs. By adopting fractional programming, the energy-efficient optimization problem is firstly converted into a subtractive form. Then, a joint power and time allocation algorithm based on the block coordinate descent and Dinkelbach method is proposed to maximize energy efficiency. Finally, simulation results show the proposed algorithm achieves a good compromise between the spectrum efficiency and total power consumption.

  • Robust Face Sketch Recognition Using Locality Sensitive Histograms

    Hanhoon PARK  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2018/10/29
      Vol:
    E102-D No:2
      Page(s):
    406-409

    This letter proposes a new face sketch recognition method. Given a query sketch and face photos in a database, the proposed method first synthesizes pseudo sketches by computing the locality sensitive histogram and dense illumination invariant features from the resized face photos, then extracts discriminative features by computing histogram of averaged oriented gradients on the query sketch and pseudo sketches, and finally find a match with the shortest cosine distance in the feature space. It achieves accuracy comparable to the state-of-the-art while showing much more robustness than the existing face sketch recognition methods.

  • Hotspot Modeling of Hand-Machine Interaction Experiences from a Head-Mounted RGB-D Camera

    Longfei CHEN  Yuichi NAKAMURA  Kazuaki KONDO  Walterio MAYOL-CUEVAS  

     
    PAPER-Human-computer Interaction

      Pubricized:
    2018/11/12
      Vol:
    E102-D No:2
      Page(s):
    319-330

    This paper presents an approach to analyze and model tasks of machines being operated. The executions of the tasks were captured through egocentric vision. Each task was decomposed into a sequence of physical hand-machine interactions, which are described with touch-based hotspots and interaction patterns. Modeling the tasks was achieved by integrating the experiences of multiple experts and using a hidden Markov model (HMM). Here, we present the results of more than 70 recorded egocentric experiences of the operation of a sewing machine. Our methods show good potential for the detection of hand-machine interactions and modeling of machine operation tasks.

  • Parallel Feature Network For Saliency Detection

    Zheng FANG  Tieyong CAO  Jibin YANG  Meng SUN  

     
    LETTER-Image

      Vol:
    E102-A No:2
      Page(s):
    480-485

    Saliency detection is widely used in many vision tasks like image retrieval, compression and person re-identification. The deep-learning methods have got great results but most of them focused more on the performance ignored the efficiency of models, which were hard to transplant into other applications. So how to design a efficient model has became the main problem. In this letter, we propose parallel feature network, a saliency model which is built on convolution neural network (CNN) by a parallel method. Parallel dilation blocks are first used to extract features from different layers of CNN, then a parallel upsampling structure is adopted to upsample feature maps. Finally saliency maps are obtained by fusing summations and concatenations of feature maps. Our final model built on VGG-16 is much smaller and faster than existing saliency models and also achieves state-of-the-art performance.

  • Construction of Asymmetric Gaussian Integer ZCZ Sequence Sets

    Xiaoyu CHEN  Heru SU  Yubo LI  Xiuping PENG  

     
    LETTER-Coding Theory

      Vol:
    E102-A No:2
      Page(s):
    471-475

    In this letter, a construction of asymmetric Gaussian integer zero correlation zone (ZCZ) sequence sets is presented based on interleaving and filtering. The proposed approach can provide optimal or almost optimal single Gaussian integer ZCZ sequence sets. In addition, arbitrary two sequences from different sets have inter-set zero cross-correlation zone (ZCCZ). The resultant sequence sets can be used in the multi-cell QS-CDMA system to reduce the inter-cell interference and increase the transmission data.

  • Design of CPM-PNC Using the Titled-Phase Model over AWGN Channels

    Nan SHA  Mingxi GUO  Yuanyuan GAO  Lihua CHEN  Kui XU  

     
    LETTER-Communication Theory and Signals

      Vol:
    E102-A No:2
      Page(s):
    476-479

    In this letter, a physical-layer network coding (PNC) scheme based on continuous phase modulation (CPM) signal using the titled-phase model, i.e., TIP-CPM-PNC, is presented, and the combined titled-phase state trellis for the superimposed CPM signal in TIP-CPM-PNC is discussed. Simulation results show that the proposed scheme with low decoding complexity can achieve the same error performance as CPM-PNC using the traditional-phase model.

  • Computationally Efficient Model Predictive Control for Multi-Agent Surveillance Systems

    Koichi KOBAYASHI  Mifuyu KIDO  Yuh YAMASHITA  

     
    PAPER

      Vol:
    E102-A No:2
      Page(s):
    372-378

    In this paper, a surveillance system by multiple agents, which is called a multi-agent surveillance system, is studied. A surveillance area is given by an undirected connected graph. Then, the optimal control problem for multi-agent surveillance systems (the optimal surveillance problem) is to find trajectories of multiple agents that travel each node as evenly as possible. In our previous work, this problem is reduced to a mixed integer linear programming problem. However, the computation time for solving it exponentially grows with the number of agents. To overcome this technical issue, a new model predictive control method for multi-agent surveillance systems is proposed. First, a procedure of individual optimization, which is a kind of approximate solution methods, is proposed. Next, a method to improve the control performance is proposed. In addition, an event-triggering condition is also proposed. The effectiveness of the proposed method is presented by a numerical example.

  • How to Decide Window-Sizes of Smoothing Methods: A Goodness of Fit Criterion for Smoothing Oscillation Data

    Kenichi SHIBATA  Takashi AMEMIYA  

     
    BRIEF PAPER

      Vol:
    E102-C No:2
      Page(s):
    143-146

    Organic electronics devices can be applicable to implant sensors. The noises in the acquired data can be removed by smoothing using sliding windows. We developed a new criterion for window-size decision based on smoothness and similarity (SSC). The smoothed curve fits the raw data well and is sufficiently smooth.

  • Maximally Permissive Nonblocking Supervisors for Similarity Control of Nondeterministic Discrete Event Systems under Event and State Observations

    Jinglun LI  Shigemasa TAKAI  

     
    LETTER

      Vol:
    E102-A No:2
      Page(s):
    399-403

    We consider a similarity control problem for discrete event systems modeled as nondeterministic automata. A nonblocking supervisor was synthesized in the previous work under the assumption that the event occurrence and the current state of the plant are observable. In this letter, we prove that the synthesized supervisor is a maximally permissive nonblocking one.

  • Specific Properties of the Computation Process by a Turing Machine on the Game of Life

    Shigeru NINAGAWA  

     
    PAPER-Nonlinear Problems

      Vol:
    E102-A No:2
      Page(s):
    415-422

    The Game of Life, a two-dimensional computationally universal cellular automaton, is known to exhibits 1/f noise in the evolutions starting from random configurations. In this paper we perform the spectral analysis on the computation process by a Turing machine constructed on the array of the Game of Life. As a result, the power spectrum averaged over the whole array has almost flat line at low frequencies and a lot of sharp peaks at high frequencies although some regions in which complicated behavior such as frequent memory rewriting occurs exhibit 1/f noise. This singular power spectrum is, however, easily turned into 1/f by slightly deforming the initial configuration of the Turing machine. These results emphasize the peculiarity of the computation process on the Game of Life that is never shared with the evolutions from random configurations. The Lyapunov exponents have positive values in three out of six trials and zero or negative values in other three trails. That means the computation process is essentially chaotic but it has capable of recovering a slight error in the configuration of the Turing machine.

  • Characterizing Link-2 LR-Visibility Polygons and Related Problems

    Xuehou TAN  Bo JIANG  

     
    PAPER-Algorithms and Data Structures

      Vol:
    E102-A No:2
      Page(s):
    423-429

    Two points x, y inside a simple polygon P are said to be mutually link-2 visible if there exists the third point z ∈ P such that z is visible from both x and y. The polygon P is link-2 LR-visible if there are two points s, t on the boundary of P such that every point on the clockwise boundary of P from s to t is link-2 visible from some point of the other boundary of P from t to s and vice versa. We give a characterization of link-2 LR-visibility polygons by generalizing the known result on LR-visibility polygons. A new idea is to extend the concepts of ray-shootings and components to those under notion of link-2 visibility. Then, we develop an O(n log n) time algorithm to determine whether a given polygon is link-2 LR-visible. Using the characterization of link-2 LR-visibility polygons, we further present an O(n log n) time algorithm for determining whether a polygonal region is searchable by a k-searcher, k ≥ 2. This improves upon the previous O(n2) time bound [9]. A polygonal region P is said to be searchable by a searcher if the searcher can detect (or see) an unpredictable intruder inside the region, no matter how fast the intruder moves. A k-searcher holds k flashlights and can see only along the rays of the flashlights emanating from his position.

  • A Universal Two-Dimensional Source Coding by Means of Subblock Enumeration Open Access

    Takahiro OTA  Hiroyoshi MORITA  Akiko MANADA  

     
    PAPER-Information Theory

      Vol:
    E102-A No:2
      Page(s):
    440-449

    The technique of lossless compression via substring enumeration (CSE) is a kind of enumerative code and uses a probabilistic model built from the circular string of an input source for encoding a one-dimensional (1D) source. CSE is applicable to two-dimensional (2D) sources, such as images, by dealing with a line of pixels of a 2D source as a symbol of an extended alphabet. At the initial step of CSE encoding process, we need to output the number of occurrences of all symbols of the extended alphabet, so that the time complexity increases exponentially when the size of source becomes large. To reduce computational time, we can rearrange pixels of a 2D source into a 1D source string along a space-filling curve like a Hilbert curve. However, information on adjacent cells in a 2D source may be lost in the conversion. To reduce the time complexity and compress a 2D source without converting to a 1D source, we propose a new CSE which can encode a 2D source in a block-by-block fashion instead of in a line-by-line fashion. The proposed algorithm uses the flat torus of an input 2D source as a probabilistic model instead of the circular string of the source. Moreover, we prove the asymptotic optimality of the proposed algorithm for 2D general sources.

  • Real Challenge of Mobile Networks Toward 5G — An Expectation for Antennas & Propagation — Open Access

    Fumio WATANABE  

     
    INVITED PAPER-Wireless Communication Technologies

      Pubricized:
    2018/08/21
      Vol:
    E102-B No:2
      Page(s):
    182-188

    The next generation mobile system “5G” are under research, development and standardization for a service start of around year 2020. It is likely to use frequency bands higher than existing bands to have wider bandwidth for high throughput services. This paper reviews technical issues on higher frequency bands applying mobile systems including system trials and use case trials. It identifies expectations for antennas & propagation studies toward 5G era.

  • Coaxially Fed Antenna Composed of Monopole and Choke Structure Using Two Different Configurations of Composite Right/Left-Handed Coaxial Lines

    Takatsugu FUKUSHIMA  Naobumi MICHISHITA  Hisashi MORISHITA  Naoya FUJIMOTO  

     
    PAPER-Antennas

      Pubricized:
    2018/08/21
      Vol:
    E102-B No:2
      Page(s):
    205-215

    Two kinds of composite right/left-handed coaxial lines (CRLH CLs) are designed for an antenna element. The dispersion relations of the infinite periodic CRLH CLs are designed to occur -1st resonance at around 700 MHz, respectively. The designed CRLH CLs comprise a monopole and a choke structure for antenna elements. To verify the resonant modes and frequencies, the monopole structure, the choke structure, and the antenna element which is combined the monopole and the choke structures are simulated by eigenmode analysis. The resonant frequencies correspond to the dispersion relations. The monopole and the choke structures are applied to the coaxially fed antenna. The proposed antenna matches at 710 MHz and radiates. At the resonant frequency, the total length of the proposed antenna which is the length of the monopole structure plus the choke structure is 0.12 wavelength. The characteristics of the proposed antenna has been compared with that of the conventional coaxially fed monopole antenna without the choke structure and the sleeve antenna with the quarter-wavelength choke structure. The radiation pattern of the proposed antenna is omnidirectional, the total antenna efficiency is 0.73 at resonant frequencies, and leakage current is suppressed lesser than -10 dB at resonant frequency. The propose antenna is fabricated and measured. The measured |S11| characteristics, radiation patterns, and the total antenna efficiency are in good agreement with the simulated results.

  • A Low Cost Solution of Hand Gesture Recognition Using a Three-Dimensional Radar Array

    Shengchang LAN  Zonglong HE  Weichu CHEN  Kai YAO  

     
    PAPER-Sensing

      Pubricized:
    2018/08/21
      Vol:
    E102-B No:2
      Page(s):
    233-240

    In order to provide an alternative solution of human machine interfaces, this paper proposed to recognize 10 human hand gestures regularly used in the consumer electronics controlling scenarios based on a three-dimensional radar array. This radar array was composed of three low cost 24GHz K-band Doppler CW (Continuous Wave) miniature I/Q (In-phase and Quadrature) transceiver sensors perpendicularly mounted to each other. Temporal and spectral analysis was performed to extract magnitude and phase features from six channels of I/Q signals. Two classifiers were proposed to implement the recognition. Firstly, a decision tree classifier performed a fast responsive recognition by using the supervised thresholds. To improve the recognition robustness, this paper further studied the recognition using a two layer CNN (Convolutional Neural Network) classifier with the frequency spectra as the inputs. Finally, the paper demonstrated the experiments and analysed the performances of the radar array respectively. Results showed that the proposed system could reach a high recognition accurate rate higher than 92%.

  • Moving Target Detection and Two-Receiver Setup Using Optical-Fiber-Connected Passive Primary Surveillance Radar

    Masato WATANABE  Junichi HONDA  Takuya OTSUYAMA  

     
    PAPER-Sensing

      Pubricized:
    2018/08/21
      Vol:
    E102-B No:2
      Page(s):
    241-246

    Multi-static Primary Surveillance Radar (MSPSR) has recently attracted attention as a new surveillance technology for civil aviation. Using multiple receivers, Primary Surveillance Radar (PSR) detection performance can be improved by synthesizing the reflection characteristics which change due to the aircraft's position. In this paper, we report experimental results from our proposed optical-fiber-connected passive PSR system with transmit signal installed at the Sendai Airport in Japan. The signal-to noise ratio of experimental data is evaluated to verify moving target detection. In addition, we confirm the operation of the proposed system using a two-receiver setup, to resemble a conventional multi-static radar. Finally, after applying time correction, the delay of the reflected signal from a stationary target remains within the expected range.

  • BER Analysis of WFRFT-Based Systems with Order Offset

    Yuan LIANG  Xinyu DA  Ruiyang XU  Lei NI  Dong ZHAI  Yu PAN  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2018/07/25
      Vol:
    E102-B No:2
      Page(s):
    277-284

    We propose a novel bit error rate (BER) analysis model of weighted-type fractional Fourier transform (WFRFT)-based systems with WFRFT order offset Δα. By using the traditional BPSK BER analysis method, we deduce the equivalent signal noise ratio (SNR), model the interference in the channel as a Gaussian noise with non-zero mean, and provide a theoretical BER expression of the proposed system. Simulation results show that its theoretical BER performance well matches the empirical performance, which demonstrates that the theoretical BER analysis proposed in this paper is reliable.

1781-1800hit(16314hit)