The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SI(16314hit)

1561-1580hit(16314hit)

  • A Taxonomy of Secure Two-Party Comparison Protocols and Efficient Constructions

    Nuttapong ATTRAPADUNG  Goichiro HANAOKA  Shinsaku KIYOMOTO  Tomoaki MIMOTO  Jacob C. N. SCHULDT  

     
    PAPER-Cryptography and Information Security

      Vol:
    E102-A No:9
      Page(s):
    1048-1060

    Secure two-party comparison plays a crucial role in many privacy-preserving applications, such as privacy-preserving data mining and machine learning. In particular, the available comparison protocols with the appropriate input/output configuration have a significant impact on the performance of these applications. In this paper, we firstly describe a taxonomy of secure two-party comparison protocols which allows us to describe the different configurations used for these protocols in a systematic manner. This taxonomy leads to a total of 216 types of comparison protocols. We then describe conversions among these types. While these conversions are based on known techniques and have explicitly or implicitly been considered previously, we show that a combination of these conversion techniques can be used to convert a perhaps less-known two-party comparison protocol by Nergiz et al. (IEEE SocialCom 2010) into a very efficient protocol in a configuration where the two parties hold shares of the values being compared, and obtain a share of the comparison result. This setting is often used in multi-party computation protocols, and hence in many privacy-preserving applications as well. We furthermore implement the protocol and measure its performance. Our measurement suggests that the protocol outperforms the previously proposed protocols for this input/output configuration, when off-line pre-computation is not permitted.

  • Frequency-Domain EMI Simulation of Power Electronic Converter with Voltage-Source and Current-Source Noise Models

    Keita TAKAHASHI  Takaaki IBUCHI  Tsuyoshi FUNAKI  

     
    PAPER-Energy in Electronics Communications

      Pubricized:
    2019/03/14
      Vol:
    E102-B No:9
      Page(s):
    1853-1861

    The electromagnetic interference (EMI) generated by power electronic converters is largely influenced by parasitic inductances and capacitances of the converter. One of the most popular EMI simulation methods that can take account of the parasitic parameters is the three-dimensional electromagnetic simulation by finite element method (FEM). A noise-source model should be given in the frequency domain in comprehensive FEM simulations. However, the internal impedance of the noise source is static in the frequency domain, whereas the transient switching of a power semiconductor changes its internal resistance in the time domain. In this paper, we propose the use of a voltage-source noise model and a current-source noise model to simulate EMI noise with the two components of voltage-dependent noise and current-dependent noise in the frequency domain. In order to simulate voltage-dependent EMI noise, we model the power semiconductor that is turning on by a voltage source, whose internal impedance is low. The voltage-source noise is proportional to the amplitude of the voltage. In order to simulate current-dependent EMI noise, we model the power semiconductor that is turning off by a current source, whose internal impedance is large. The current-source noise is proportional to the amplitude of the current. The measured and simulated conducted EMI agreed very well.

  • Shortening the Libert-Peters-Yung Revocable Group Signature Scheme by Using the Random Oracle Methodology

    Kazuma OHARA  Keita EMURA  Goichiro HANAOKA  Ai ISHIDA  Kazuo OHTA  Yusuke SAKAI  

     
    PAPER-Cryptography and Information Security

      Vol:
    E102-A No:9
      Page(s):
    1101-1117

    At EUROCRYPT 2012, Libert, Peters and Yung (LPY) proposed the first scalable revocable group signature (R-GS) scheme in the standard model which achieves constant signing/verification costs and other costs regarding signers are at most logarithmic in N, where N is the maximum number of group members. However, although the LPY R-GS scheme is asymptotically quite efficient, this scheme is not sufficiently efficient in practice. For example, the signature size of the LPY scheme is roughly 10 times larger than that of an RSA signature (for 160-bit security). In this paper, we propose a compact R-GS scheme secure in the random oracle model that is efficient not only in the asymptotic sense but also in practical parameter settings. We achieve the same efficiency as the LPY scheme in an asymptotic sense, and the signature size is nearly equal to that of an RSA signature (for 160-bit security). It is particularly worth noting that our R-GS scheme has the smallest signature size compared to those of previous R-GS schemes which enable constant signing/verification costs. Our technique, which we call parallel Boneh-Boyen-Shacham group signature technique, helps to construct an R-GS scheme without following the technique used in LPY, i.e., we directly apply the Naor-Naor-Lotspiech framework without using any identity-based encryption.

  • A Packet Classification Method via Cascaded Circular-Run-Based Trie

    Takashi HARADA  Yuki ISHIKAWA  Ken TANAKA  Kenji MIKAWA  

     
    PAPER-Classification

      Vol:
    E102-A No:9
      Page(s):
    1171-1178

    The packet classification problem to determine the behavior of incoming packets at the network devices. The processing latency of packet classification by linear search is proportional to the number of classification rules. To limit the latency caused by classification to a certain level, we should develop a classification algorithm that classifies packets in a time independent of the number of classification rules. Arbitrary (including noncontiguous) bitmask rules are efficiently expressive for controlling higher layer communication, achiving access control lists, Quality of Service and so on. In this paper, we propose a classification algorithm based on run-based trie [1] according to arbitrary bitmask rules. The space complexity of proposed algorithm is in linear in the size of a rule list. The time complexity except for construction of that can be regarded as constant which is independent the number of rules. Experimental results using a packet classification algorithm benchmark [2] show that our method classifies packets in constant time independent of the number of rules.

  • Upcoming Mood Prediction Using Public Online Social Networks Data: Analysis over Cyber-Social-Physical Dimension

    Chaima DHAHRI  Kazunori MATSUMOTO  Keiichiro HOASHI  

     
    PAPER-Emotional Information Processing

      Pubricized:
    2019/06/21
      Vol:
    E102-D No:9
      Page(s):
    1625-1634

    Upcoming mood prediction plays an important role in different topics such as bipolar depression disorder in psychology and quality-of-life and recommendations on health-related quality of life research. The mood in this study is defined as the general emotional state of a user. In contrast to emotions which is more specific and varying within a day, the mood is described as having either a positive or negative valence[1]. We propose an autonomous system that predicts the upcoming user mood based on their online activities over cyber, social and physical spaces without using extra-devices and sensors. Recently, many researchers have relied on online social networks (OSNs) to detect user mood. However, all the existing works focused on inferring the current mood and only few works have focused on predicting the upcoming mood. For this reason, we define a new goal of predicting the upcoming mood. We, first, collected ground truth data during two months from 383 subjects. Then, we studied the correlation between extracted features and user's mood. Finally, we used these features to train two predictive systems: generalized and personalized. The results suggest a statistically significant correlation between tomorrow's mood and today's activities on OSNs, which can be used to develop a decent predictive system with an average accuracy of 70% and a recall of 75% for the correlated users. This performance was increased to an average accuracy of 79% and a recall of 80% for active users who have more than 30 days of history data. Moreover, we showed that, for non-active users, referring to a generalized system can be a solution to compensate the lack of data at the early stage of the system, but when enough data for each user is available, a personalized system is used to individually predict the upcoming mood.

  • A Fully-Connected Ising Model Embedding Method and Its Evaluation for CMOS Annealing Machines

    Daisuke OKU  Kotaro TERADA  Masato HAYASHI  Masanao YAMAOKA  Shu TANAKA  Nozomu TOGAWA  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2019/06/10
      Vol:
    E102-D No:9
      Page(s):
    1696-1706

    Combinatorial optimization problems with a large solution space are difficult to solve just using von Neumann computers. Ising machines or annealing machines have been developed to tackle these problems as a promising Non-von Neumann computer. In order to use these annealing machines, every combinatorial optimization problem is mapped onto the physical Ising model, which consists of spins, interactions between them, and their external magnetic fields. Then the annealing machines operate so as to search the ground state of the physical Ising model, which corresponds to the optimal solution of the original combinatorial optimization problem. A combinatorial optimization problem can be firstly described by an ideal fully-connected Ising model but it is very hard to embed it onto the physical Ising model topology of a particular annealing machine, which causes one of the largest issues in annealing machines. In this paper, we propose a fully-connected Ising model embedding method targeting for CMOS annealing machine. The key idea is that the proposed method replicates every logical spin in a fully-connected Ising model and embeds each logical spin onto the physical spins with the same chain length. Experimental results through an actual combinatorial problem show that the proposed method obtains spin embeddings superior to the conventional de facto standard method, in terms of the embedding time and the probability of obtaining a feasible solution.

  • Data-Driven Decision-Making in Cyber-Physical Integrated Society

    Noboru SONEHARA  Takahisa SUZUKI  Akihisa KODATE  Toshihiko WAKAHARA  Yoshinori SAKAI  Yu ICHIFUJI  Hideo FUJII  Hideki YOSHII  

     
    INVITED PAPER

      Pubricized:
    2019/07/04
      Vol:
    E102-D No:9
      Page(s):
    1607-1616

    The Cyber-Physical Integrated Society (CPIS) is being formed with the fusion of cyber-space and the real-world. In this paper, we will discuss Data-Driven Decision-Making (DDDM) support systems to solve social problems in the CPIS. First, we introduce a Web of Resources (WoR) that uses Web booking log data for destination data management. Next, we introduce an Internet of Persons (IoP) system to visualize individual and group flows of people by analyzing collected Wi-Fi usage log data. Specifically, we present examples of how WoR and IoP visualize flows of groups of people that can be shared across different industries, including telecommunications carriers and railway operators, and policy decision support for local, short-term events. Finally, the importance of data-driven training of human resources to support DDDM in the future CPIS is discussed.

  • Latent Variable Based Anomaly Detection in Network System Logs

    Kazuki OTOMO  Satoru KOBAYASHI  Kensuke FUKUDA  Hiroshi ESAKI  

     
    PAPER-Network Operation Support

      Pubricized:
    2019/06/07
      Vol:
    E102-D No:9
      Page(s):
    1644-1652

    System logs are useful to understand the status of and detect faults in large scale networks. However, due to their diversity and volume of these logs, log analysis requires much time and effort. In this paper, we propose a log event anomaly detection method for large-scale networks without pre-processing and feature extraction. The key idea is to embed a large amount of diverse data into hidden states by using latent variables. We evaluate our method with 12 months of system logs obtained from a nation-wide academic network in Japan. Through comparisons with Kleinberg's univariate burst detection and a traditional multivariate analysis (i.e., PCA), we demonstrate that our proposed method achieves 14.5% higher recall and 3% higher precision than PCA. A case study shows detected anomalies are effective information for troubleshooting of network system faults.

  • Geometric Dilution of Precision for Received Signal Strength in the Wireless Sensor Networks Open Access

    Wanchun LI  Yifan WEI  Ping WEI  Hengming TAI  Xiaoyan PENG  Hongshu LIAO  

     
    LETTER-Mobile Information Network and Personal Communications

      Vol:
    E102-A No:9
      Page(s):
    1330-1332

    Geometric dilution of precision (GDOP) is a measure showing the positioning accuracy at different spatial locations in location systems. Although expressions of GDOP for the time of arrival (TOA), time difference of arrival (TDOA), and angle of arrival (AOA) systems have been developed, no closed form expression of GDOP are available for the received signal strength (RSS) system. This letter derives an explicit GDOP expression utilizing the RSS measurement in the wireless sensor networks.

  • Efficient Approximate 3-Dimensional Point Set Matching Using Root-Mean-Square Deviation Score

    Yoichi SASAKI  Tetsuo SHIBUYA  Kimihito ITO  Hiroki ARIMURA  

     
    PAPER-Optimization

      Vol:
    E102-A No:9
      Page(s):
    1159-1170

    In this paper, we study the approximate point set matching (APSM) problem with minimum RMSD score under translation, rotation, and one-to-one correspondence in d-dimension. Since most of the previous works about APSM problems use similality scores that do not especially care about one-to-one correspondence between points, such as Hausdorff distance, we cannot easily apply previously proposed methods to our APSM problem. So, we focus on speed-up of exhaustive search algorithms that can find all approximate matches. First, we present an efficient branch-and-bound algorithm using a novel lower bound function of the minimum RMSD score for the enumeration version of APSM problem. Then, we modify this algorithm for the optimization version. Next, we present another algorithm that runs fast with high probability when a set of parameters are fixed. Experimental results on both synthetic datasets and real 3-D molecular datasets showed that our branch-and-bound algorithm achieved significant speed-up over the naive algorithm still keeping the advantage of generating all answers.

  • The Secure Parameters and Efficient Decryption Algorithm for Multivariate Public Key Cryptosystem EFC Open Access

    Yacheng WANG  Yasuhiko IKEMATSU  Dung Hoang DUONG  Tsuyoshi TAKAGI  

     
    PAPER-Cryptography and Information Security

      Vol:
    E102-A No:9
      Page(s):
    1028-1036

    At PQCrypto 2016, Szepieniec et al. proposed a new type of trapdoor called Extension Field Cancellation (EFC) for constructing secure multivariate encryption cryptosystems. They also specifically suggested two schemes EFCp- and EFCpt2- that apply this trapdoor and some modifiers. Although both of them seem to avoid all attacks used for cryptanalysis on multivariate cryptography, their decryption efficiency has room for improvement. On the other hand, their security was analyzed mainly through an algebraic attack of computing the Gröbner basis of the public key, and there possibly exists more effective attacks. In this paper, we introduce a more efficient decryption approach for EFCp- and EFCpt2-, which manages to avoid all redundant computation involved in the original decryption algorithms without altering their public key. In addition, we estimate the secure parameters for EFCp- and EFCpt2- through a hybrid attack of algebraic attack and exhaustive search.

  • A Cross-Platform Study on Emerging Malicious Programs Targeting IoT Devices Open Access

    Tao BAN  Ryoichi ISAWA  Shin-Ying HUANG  Katsunari YOSHIOKA  Daisuke INOUE  

     
    LETTER-Cybersecurity

      Pubricized:
    2019/06/21
      Vol:
    E102-D No:9
      Page(s):
    1683-1685

    Along with the proliferation of IoT (Internet of Things) devices, cyberattacks towards them are on the rise. In this paper, aiming at efficient precaution and mitigation of emerging IoT cyberthreats, we present a multimodal study on applying machine learning methods to characterize malicious programs which target multiple IoT platforms. Experiments show that opcode sequences obtained from static analysis and API sequences obtained by dynamic analysis provide sufficient discriminant information such that IoT malware can be classified with near optimal accuracy. Automated and accelerated identification and mitigation of new IoT cyberthreats can be enabled based on the findings reported in this study.

  • Smart Ambulance Approach Alarm System Using Smartphone

    Toru KOBAYASHI  Fukuyoshi KIMURA  Tetsuo IMAI  Kenichi ARAI  

     
    LETTER-Notification System

      Pubricized:
    2019/06/21
      Vol:
    E102-D No:9
      Page(s):
    1689-1692

    In order to operate an ambulance efficiently, we developed a Smart Ambulance Approach Alarm System using smartphone, by notifying the approach of an ambulance to other vehicles on public roads. The position information of ambulances has not been opened in view of development costs and privacy protection. Therefore, our study opens the position information inexpensively by loading commodity smartphones, not special devices, into ambulances. The position information is made to be open as minimum necessary information by our developed cloud server application, considering dynamic state of other vehicles on public roads and privacy of ambulance service users. We tested the functional efficiency of this system by the demonstration experiment on public roads.

  • Hierarchical Community Detection in Social Networks Based on Micro-Community and Minimum Spanning Tree

    Zhixiao WANG  Mengnan HOU  Guan YUAN  Jing HE  Jingjing CUI  Mingjun ZHU  

     
    PAPER-Data Engineering, Web Information Systems

      Pubricized:
    2019/06/05
      Vol:
    E102-D No:9
      Page(s):
    1773-1783

    Social networks often demonstrate hierarchical community structure with communities embedded in other ones. Most existing hierarchical community detection methods need one or more tunable parameters to control the resolution levels, and the obtained dendrograms, a tree describing the hierarchical community structure, are extremely complex to understand and analyze. In the paper, we propose a parameter-free hierarchical community detection method based on micro-community and minimum spanning tree. The proposed method first identifies micro-communities based on link strength between adjacent vertices, and then, it constructs minimum spanning tree by successively linking these micro-communities one by one. The hierarchical community structure of social networks can be intuitively revealed from the merging order of these micro-communities. Experimental results on synthetic and real-world networks show that our proposed method exhibits good accuracy and efficiency performance and outperforms other state-of-the-art methods. In addition, our proposed method does not require any pre-defined parameters, and the output dendrogram is simple and meaningful for understanding and analyzing the hierarchical community structure of social networks.

  • Eye Movement Measurement of Gazing at the Rim of a Column in Stereo Images with Yellow-Blue Equiluminance Random Dots Open Access

    Shinya MOCHIDUKI  Ayaka NUNOMURA  Hiroaki KUDO  Mitsuho YAMADA  

     
    PAPER

      Vol:
    E102-A No:9
      Page(s):
    1196-1204

    We studied the detection of the incongruence between the two eyes' retinal images from occlusion perception. We previously analyzed the evasion action caused by occlusion by using green-red equiluminance, which is processed by parvocellular cells. Here we analyzed this action by using yellow-blue equiluminance, which is said to be treated by koniocellular cells and parvocellular cells. We observed that there were the cases in which the subject could perceive incongruence by the occlusion and other cases in which the subject could not perceive it. Significant differences were not seen in all conditions. Because a difference was seen in an evasion action at the time of the rim occlusion gaze when we compare the result for the yellow-blue equiluminance with the green-red equiluminance, it is suggested that the response for each equiluminance is different. We were able to clarify the characteristic difference between parvocellular cells and koniocellular cells from an occlusion experiment.

  • Differences among Summation Polynomials over Various Forms of Elliptic Curves

    Chen-Mou CHENG  Kenta KODERA  Atsuko MIYAJI  

     
    PAPER-Cryptography and Information Security

      Vol:
    E102-A No:9
      Page(s):
    1061-1071

    The security of elliptic curve cryptography is closely related to the computational complexity of the elliptic curve discrete logarithm problem (ECDLP). Today, the best practical attacks against ECDLP are exponential-time generic discrete logarithm algorithms such as Pollard's rho method. A recent line of inquiry in index calculus for ECDLP started by Semaev, Gaudry, and Diem has shown that, under certain heuristic assumptions, such algorithms could lead to subexponential attacks to ECDLP. In this study, we investigate the computational complexity of ECDLP for elliptic curves in various forms — including Hessian, Montgomery, (twisted) Edwards, and Weierstrass representations — using index calculus. Using index calculus, we aim to determine whether there is any significant difference in the computational complexity of ECDLP for elliptic curves in various forms. We provide empirical evidence and insight showing an affirmative answer in this paper.

  • Generalized Shogi, Chess, and Xiangqi are Constant-Time Testable

    Hiro ITO  Atsuki NAGAO  Teagun PARK  

     
    PAPER-Puzzles

      Vol:
    E102-A No:9
      Page(s):
    1126-1133

    We present constant-time testing algorithms for generalized shogi (Japanese chess), chess, and xiangqi (Chinese chess). These problems are known or believed to be EXPTIME-complete. A testing algorithm (or a tester) for a property accepts an input if it has the property, and rejects it with high probability if it is far from having the property (e.g., at least 2/3) by reading only a constant part of the input. A property is said to be testable if a tester exists. Given any position on a ⌊√n⌋×⌊√n⌋ board with O(n) pieces, the generalized shogi, chess, and xiangqi problem are problems determining the property that “the player who moves first has a winning strategy.” We propose that this property is testable for shogi, chess, and xiangqi. The shogi tester and xiangqi tester have a one-sided-error, but surprisingly, the chess tester has no-error. Over the last decade, many problems have been revealed to be testable, but most of such problems belong to NP. This is the first result on the constant-time testability of EXPTIME-complete problems.

  • Improved Integral Attack on HIGHT

    Yuki FUNABIKI  Yosuke TODO  Takanori ISOBE  Masakatu MORII  

     
    PAPER-Cryptography and Information Security

      Vol:
    E102-A No:9
      Page(s):
    1259-1271

    HIGHT is a 64-bit block lightweight cipher, which adopts the ARX-based generalized Feistel network, and it accepts a 128-bit key. It is a standard encryption algorithm in South Korea and also is internationally standardized by ISO/IEC 18033-3. Therefore, many third-party cryptanalyses have been proposed against HIGHT. Impossible differential and integral attacks are applied to reduced-round HIGHT, and especially, the impossible differential attack causes the 27-round attack, which is the current best attack under the single-key setting. In this paper, we propose some improved integral attacks against HIGHT. We first apply the division property to HIGHT and find new 19-round integral characteristics, which are improved by two rounds compared with the previous best ones. We append 9-round key recovery to these characteristics and it enables us to attack 28-round HIGHT. Its time complexity is 2127.02 where 263 chosen plaintexts and 2117 memory are required. Moreover, we can attack 29-round HIGHT if the full codebook is used, where its time and memory complexities are 2126.07 and 2118, respectively. It improves by two rounds compared with the previous best attack.

  • Exploiting Packet-Level Parallelism of Packet Parsing for FPGA-Based Switches

    Junnan LI  Biao HAN  Zhigang SUN  Tao LI  Xiaoyan WANG  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Pubricized:
    2019/03/18
      Vol:
    E102-B No:9
      Page(s):
    1862-1874

    FPGA-based switches are appealing nowadays due to the balance between hardware performance and software flexibility. Packet parser, as the foundational component of FPGA-based switches, is to identify and extract specific fields used in forwarding decisions, e.g., destination IP address. However, traditional parsers are too rigid to accommodate new protocols. In addition, FPGAs usually have a much lower clock frequency and fewer hardware resources, compared to ASICs. In this paper, we present PLANET, a programmable packet-level parallel parsing architecture for FPGA-based switches, to overcome these two limitations. First, PLANET has flexible programmability of updating parsing algorithms at run-time. Second, PLANET highly exploits parallelism inside packet parsing to compensate FPGA's low clock frequency and reduces resource consumption with one-block recycling design. We implemented PLANET on an FPGA-based switch prototype with well-integrated datacenter protocols. Evaluation results show that our design can parse packets at up to 100 Gbps, as well as maintain a relative low parsing latency and fewer hardware resources than existing proposals.

  • STBC Based Decoders for Two-User Interference MIMO Channels

    Zhiqiang YI  Meilin HE  Peng PAN  Haiquan WANG  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Pubricized:
    2019/03/14
      Vol:
    E102-B No:9
      Page(s):
    1875-1884

    This paper analyzes the performance of various decoders in a two-user interference channel, and some improved decoders based on enhanced utilization of channel state information at the receiver side are presented. Further, new decoders, namely hierarchical constellation based decoders, are proposed. Simulations show that the improved decoders and the proposed decoders have much better performance than existing decoders. Moreover, the proposed decoders have lower decoding complexity than the traditional maximum likelihood decoder.

1561-1580hit(16314hit)