The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SPE(2504hit)

401-420hit(2504hit)

  • Singular-Spectrum Analysis for Digital Audio Watermarking with Automatic Parameterization and Parameter Estimation Open Access

    Jessada KARNJANA  Masashi UNOKI  Pakinee AIMMANEE  Chai WUTIWIWATCHAI  

     
    PAPER-Information Network

      Pubricized:
    2016/05/16
      Vol:
    E99-D No:8
      Page(s):
    2109-2120

    This paper proposes a blind, inaudible, robust digital-audio watermarking scheme based on singular-spectrum analysis, which relates to watermarking techniques based on singular value decomposition. We decompose a host signal into its oscillatory components and modify amplitudes of some of those components with respect to a watermark bit and embedding rule. To improve the sound quality of a watermarked signal and still maintain robustness, differential evolution is introduced to find optimal parameters of the proposed scheme. Test results show that, although a trade-off between inaudibility and robustness still persists, the difference in sound quality between the original and the watermarked one is considerably smaller. This improved scheme is robust against many attacks, such as MP3 and MP4 compression, and band-pass filtering. However, there is a drawback, i.e., some music-dependent parameters need to be shared between embedding and extraction processes. To overcome this drawback, we propose a method for automatic parameter estimation. By incorporating the estimation method into the framework, those parameters need not to be shared, and the test results show that it can blindly decode watermark bits with an accuracy of 99.99%. This paper not only proposes a new technique and scheme but also discusses the singular value and its physical interpretation.

  • Energy-Efficient Resource Allocation in Sensing-Based Spectrum Sharing for Cooperative Cognitive Radio Networks

    Wanming HAO  Shouyi YANG  Osamu MUTA  Haris GACANIN  Hiroshi FURUKAWA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E99-B No:8
      Page(s):
    1763-1771

    Energy-efficient resource allocation is considered in sensing-based spectrum sharing for cooperative cognitive radio networks (CCRNs). The secondary user first listens to the spectrum allocated to the primary user (PU) to detect the PU state and then initiates data transmission with two power levels based on the sensing decision (e.g., idle or busy). Under this model, the optimization problem of maximizing energy efficiency (EE) is formulated over the transmission power and sensing time subject to some practical limitations, such as the individual power constraint for secondary source and relay, the quality of service (QoS) for the secondary system, and effective protection for the PU. Given the complexity of this problem, two simplified versions (i.e., perfect and imperfect sensing cases) are studied in this paper. We transform the considered problem in fractional form into an equivalent optimization problem in subtractive form. Then, for perfect sensing, the Lagrange dual decomposition and iterative algorithm are applied to acquire the optimal power allocation policy; for imperfect sensing, an exhaustive search and iterative algorithm are proposed to obtain the optimal sensing time and corresponding power allocation strategy. Finally, numerical results show that the energy-efficient design greatly improves EE compared with the conventional spectrum-efficient design.

  • Online Convolutive Non-Negative Bases Learning for Speech Enhancement

    Yinan LI  Xiongwei ZHANG  Meng SUN  Yonggang HU  Li LI  

     
    LETTER-Speech and Hearing

      Vol:
    E99-A No:8
      Page(s):
    1609-1613

    An online version of convolutive non-negative sparse coding (CNSC) with the generalized Kullback-Leibler (K-L) divergence is proposed to adaptively learn spectral-temporal bases from speech streams. The proposed scheme processes training data piece-by-piece and incrementally updates learned bases with accumulated statistics to overcome the inefficiency of its offline counterpart in processing large scale or streaming data. Compared to conventional non-negative sparse coding, we utilize the convolutive model within bases, so that each basis is capable of describing a relatively long temporal span of signals, which helps to improve the representation power of the model. Moreover, by incorporating a voice activity detector (VAD), we propose an unsupervised enhancement algorithm that updates the noise dictionary adaptively from non-speech intervals. Meanwhile, for the speech intervals, one can adaptively learn the speech bases by keeping the noise ones fixed. Experimental results show that the proposed algorithm outperforms the competing algorithms substantially, especially when the background noise is highly non-stationary.

  • Adaptive Single-Channel Speech Enhancement Method for a Push-To-Talk Enabled Wireless Communication Device

    Hyoung-Gook KIM  Jin Young KIM  

     
    PAPER-Multimedia Systems for Communications

      Vol:
    E99-B No:8
      Page(s):
    1745-1753

    In this paper, we propose a single-channel speech enhancement method for a push-to-talk enabled wireless communication device. The proposed method is based on adaptive weighted β-order spectral amplitude estimation under speech presence uncertainty and enhanced instantaneous phase estimation in order to achieve flexible and effective noise reduction while limiting the speech distortion due to different noise conditions. Experimental results confirm that the proposed method delivers higher voice quality and intelligibility than the reference methods in various noise environments.

  • Welch FFT Segment Size Selection Method for Spectrum Awareness System

    Hiroki IWATA  Kenta UMEBAYASHI  Samuli TIIRO  Janne J. LEHTOMÄKI  Miguel LÓPEZ-BENÍTEZ  Yasuo SUZUKI  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E99-B No:8
      Page(s):
    1813-1823

    We create a practical method to set the segment size of the Welch FFT for wideband and long-term spectrum usage measurements in the context of hierarchical dynamic spectrum access (DSA). An energy detector (ED) based on the Welch FFT can be used to detect the presence or absence of primary user (PU) signal and to estimate the duty cycle (DC). In signal detection with the Welch FFT, segment size is an important design parameter since it determines both the detection performance and the frequency resolution. Between these two metrics, there is a trade-off relationship which can be controlled by adjusting the segment size. To cope with this trade-off relationship, we define an optimum and, more easy to analyze sub-optimum segment size design criterion. An analysis of the sub-optimum segment size criterion reveals that the resulting segment size depends on the signal-to-noise ratio (SNR) and the DC. Since in practice both SNR and DC are unknown, proper segment setting is difficult. To overcome this problem, we propose an adaptive segment size selection (ASSS) method that uses noise floor estimation outputs. The proposed method does not require any prior knowledge on the SNR or the DC. Simulation results confirm that the proposed ASSS method matches the performance achieved with the optimum design criterion.

  • BFWindow: Speculatively Checking Data Property Consistency against Buffer Overflow Attacks

    Jinli RAO  Zhangqing HE  Shu XU  Kui DAI  Xuecheng ZOU  

     
    PAPER

      Pubricized:
    2016/05/31
      Vol:
    E99-D No:8
      Page(s):
    2002-2009

    Buffer overflow is one of the main approaches to get control of vulnerable programs. This paper presents a protection technique called BFWindow for performance and resource sensitive embedded systems. By coloring data structure in memory with single associate property bit to each byte and extending the target memory block to a BFWindow(2), it validates each memory write by speculatively checking consistency of data properties within the extended buffer window. Property bits are generated by compiler statically and checked by hardware at runtime. They are transparent to users. Experimental results show that the proposed mechanism is effective to prevent sequential memory writes from crossing buffer boundaries which is the common scenario of buffer overflow exploitations. The performance overhead for practical protection mode across embedded system benchmarks is under 1%.

  • Spectral Features Based on Local Hu Moments of Gabor Spectrograms for Speech Emotion Recognition

    Huawei TAO  Ruiyu LIANG  Cheng ZHA  Xinran ZHANG  Li ZHAO  

     
    LETTER-Pattern Recognition

      Pubricized:
    2016/05/06
      Vol:
    E99-D No:8
      Page(s):
    2186-2189

    To improve the recognition rate of the speech emotion, new spectral features based on local Hu moments of Gabor spectrograms are proposed, denoted by GSLHu-PCA. Firstly, the logarithmic energy spectrum of the emotional speech is computed. Secondly, the Gabor spectrograms are obtained by convoluting logarithmic energy spectrum with Gabor wavelet. Thirdly, Gabor local Hu moments(GLHu) spectrograms are obtained through block Hu strategy, then discrete cosine transform (DCT) is used to eliminate correlation among components of GLHu spectrograms. Fourthly, statistical features are extracted from cepstral coefficients of GLHu spectrograms, then all the statistical features form a feature vector. Finally, principal component analysis (PCA) is used to reduce redundancy of features. The experimental results on EmoDB and ABC databases validate the effectiveness of GSLHu-PCA.

  • CloudS: A Multi-Cloud Storage System with Multi-Level Security

    Lu SHEN  Shifang FENG  Jinjin SUN  Zhongwei LI  Ming SU  Gang WANG  Xiaoguang LIU  

     
    PAPER

      Pubricized:
    2016/05/31
      Vol:
    E99-D No:8
      Page(s):
    2036-2043

    With the increase of data quantity, people have begun to attach importance to cloud storage. However, numerous security accidents occurred to cloud servers recently, thus triggering thought about the security of traditional single cloud. In other words, traditional single cloud can't ensure the privacy of users' data to a certain extent. To solve those security issues, multi-cloud systems which spread data over multiple cloud storage servers emerged. They employ a series of erasure codes and other keyless dispersal algorithms to achieve high-level security. But non-systematic codes like RS require relatively complex arithmetic, and systematic codes have relatively weaker security. In terms of keyless dispersal algorithms, they avoid key management issues but not suit to complete parallel optimization or deduplication which is important to limited cloud storage resources. So in this paper, we design a new kind of XOR-based non-systematic erasure codes - Privacy Protecting Codes (PPC) and a SIMD encoding algorithm for better performance. To achieve higher-level security, we put forward a novel deduplication-friendly dispersal algorithm called Hash Cyclic Encryption-PPC (HCE-PPC) which can achieve complete parallelization. With these new technologies, we present a multi-cloud storage system called CloudS. For better user experience and the tradeoffs between security and performance, CloudS provides multiple levels of security by various combinations of compression, encryption and coding schemes. We implement CloudS as a web application which doesn't require users to perform complicated operations on local.

  • WORLD: A Vocoder-Based High-Quality Speech Synthesis System for Real-Time Applications Open Access

    Masanori MORISE  Fumiya YOKOMORI  Kenji OZAWA  

     
    PAPER-Speech and Hearing

      Pubricized:
    2016/04/05
      Vol:
    E99-D No:7
      Page(s):
    1877-1884

    A vocoder-based speech synthesis system, named WORLD, was developed in an effort to improve the sound quality of real-time applications using speech. Speech analysis, manipulation, and synthesis on the basis of vocoders are used in various kinds of speech research. Although several high-quality speech synthesis systems have been developed, real-time processing has been difficult with them because of their high computational costs. This new speech synthesis system has not only sound quality but also quick processing. It consists of three analysis algorithms and one synthesis algorithm proposed in our previous research. The effectiveness of the system was evaluated by comparing its output with against natural speech including consonants. Its processing speed was also compared with those of conventional systems. The results showed that WORLD was superior to the other systems in terms of both sound quality and processing speed. In particular, it was over ten times faster than the conventional systems, and the real time factor (RTF) indicated that it was fast enough for real-time processing.

  • Area-Efficient Soft-Error Tolerant Datapath Synthesis Based on Speculative Resource Sharing

    Junghoon OH  Mineo KANEKO  

     
    PAPER

      Vol:
    E99-A No:7
      Page(s):
    1311-1322

    As semiconductor technologies have advanced, the reliability problem caused by soft-errors is becoming one of the serious issues in LSIs. Moreover, multiple component errors due to single soft-errors also have become a serious problem. In this paper, we propose a method to synthesize multiple component soft-error tolerant application-specific datapaths via high-level synthesis. The novel feature of our method is speculative resource sharing between the retry parts and the secondary parts for time overhead mitigation. A scheduling algorithm using a special priority function to maximize speculative resource sharing is also an important feature of this study. Our approach can reduce the latency (schedule length) in many applications without deterioration of reliability and chip area compared with conventional datapaths without speculative resource sharing. We also found that our method is more effective when a computation algorithm possesses higher parallelism and a smaller number of resources is available.

  • A Simple Approximation Formula for Numerical Dispersion Error in 2-D and 3-D FDTD Method

    Jun SONODA  Keimei KAINO  Motoyuki SATO  

     
    BRIEF PAPER

      Vol:
    E99-C No:7
      Page(s):
    793-796

    The finite-difference time-domain (FDTD) method has been widely used in recent years to analyze the propagation and scattering of electromagnetic waves. Because the FDTD method has second-order accuracy in space, its numerical dispersion error arises from truncated higher-order terms of the Taylor expansion. This error increases with the propagation distance in cases of large-scale analysis. The numerical dispersion error is expressed by a dispersion relation equation. It is difficult to solve this nonlinear equation which have many parameters. Consequently, a simple formula is necessary to substitute for the dispersion relation error. In this study, we have obtained a simple formula for the numerical dispersion error of 2-D and 3-D FDTD method in free space propagation.

  • Speech Enhancement Algorithm Using Recursive Wavelet Shrinkage

    Gihyoun LEE  Sung Dae NA  KiWoong SEONG  Jin-Ho CHO  Myoung Nam KIM  

     
    LETTER-Speech and Hearing

      Pubricized:
    2016/03/30
      Vol:
    E99-D No:7
      Page(s):
    1945-1948

    Because wavelet transforms have the characteristic of decomposing signals that are similar to the human acoustic system, speech enhancement algorithms that are based on wavelet shrinkage are widely used. In this paper, we propose a new speech enhancement algorithm of hearing aids based on wavelet shrinkage. The algorithm has multi-band threshold value and a new wavelet shrinkage function for recursive noise reduction. We performed experiments using various types of authorized speech and noise signals, and our results show that the proposed algorithm achieves significantly better performances compared with other recently proposed speech enhancement algorithms using wavelet shrinkage.

  • PAC-k: A Parallel Aho-Corasick String Matching Approach on Graphic Processing Units Using Non-Overlapped Threads

    ThienLuan HO  Seung-Rohk OH  HyunJin KIM  

     
    PAPER-Network Management/Operation

      Vol:
    E99-B No:7
      Page(s):
    1523-1531

    A parallel Aho-Corasick (AC) approach, named PAC-k, is proposed for string matching in deep packet inspection (DPI). The proposed approach adopts graphic processing units (GPUs) to perform the string matching in parallel for high throughput. In parallel string matching, the boundary detection problem happens when a pattern is matched across chunks. The PAC-k approach solves the boundary detection problem because the number of characters to be scanned by a thread can reach the longest pattern length. An input string is divided into multiple sub-chunks with k characters. By adopting the new starting position in each sub-chunk for the failure transition, the required number of threads is reduced by a factor of k. Therefore, the overhead of terminating and reassigning threads is also decreased. In order to avoid the unnecessary overlapped scanning with multiple threads, a checking procedure is proposed that decides whether a new starting position is in the sub-chunk. In the experiments with target patterns from Snort and realistic input strings from DEFCON, throughputs are enhanced greatly compared to those of previous AC-based string matching approaches.

  • A New High-Density 10T CMOS Gate-Array Base Cell for Two-Port SRAM Applications

    Nobutaro SHIBATA  Yoshinori GOTOH  Takako ISHIHARA  

     
    PAPER-Integrated Electronics

      Vol:
    E99-C No:6
      Page(s):
    717-726

    Two-port SRAMs are frequently installed in gate-array VLSIs to implement smart functions. This paper presents a new high-density 10T CMOS base cell for gate-array-based two-port SRAM applications. Using the single base cell alone, we can implement a two-port memory cell whose bitline contacts are shared with the memory cell adjacent to one of two dedicated sides, resulting in greatly reduced parasitic capacitance in bitlines. To throw light on the total performance derived from the base cell, a plain two-port SRAM macro was designed and fabricated with a 0.35-µm low cost, logic process. Each of two 10-bit power-saved address decoders was formed with 36% fewer base cells by employing complex gates and a subdecoder. The new sense amplifier with a complementary sensing scheme had a fine sensitivity of 35 mVpp, and so we successfully reduced the required read bitline signal from 250 to 70 mVpp. With the macro with 1024 memory cells per bitline, the address access time under typical conditions of a 2.5-V power supply and 25°C was 4.0 ns (equal to that obtained with full-custom style design) and the power consumption at 200-MHz simultaneous operations of two ports was 6.7 mW for an I/O-data width of 1 bit.

  • Precise Vehicle Speed Measurement Based on a Hierarchical Homographic Transform Estimation for Law Enforcement Applications

    Hamed ESLAMI  Abolghasem A. RAIE  Karim FAEZ  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2016/03/11
      Vol:
    E99-D No:6
      Page(s):
    1635-1644

    Today, computer vision is used in different applications for intelligent transportation systems like: traffic surveillance, driver assistance, law enforcement etc. Amongst these applications, we are concentrating on speed measurement for law enforcement. In law enforcement applications, the presence of the license plate in the scene is a presupposition and metric parameters like vehicle's speed are to be estimated with a high degree of precision. The novelty of this paper is to propose a new precise, practical and fast procedure, with hierarchical architecture, to estimate the homraphic transform of the license plate and using this transform to estimate the vehicle's speed. The proposed method uses the RANSAC algorithm to improve the robustness of the estimation. Hence, it is possible to replace the peripheral equipment with vision based systems, or in conjunction with these peripherals, it is possible to improve the accuracy and reliability of the system. Results of experiments on different datasets, with different specifications, show that the proposed method can be used in law enforcement applications to measure the vehicle's speed.

  • Exploiting EEG Channel Correlations in P300 Speller Paradigm for Brain-Computer Interface

    Yali LI  Hongma LIU  Shengjin WANG  

     
    PAPER-Biological Engineering

      Pubricized:
    2016/03/07
      Vol:
    E99-D No:6
      Page(s):
    1653-1662

    A brain-computer interface (BCI) translates the brain activity into commands to control external devices. P300 speller based character recognition is an important kind of application system in BCI. In this paper, we propose a framework to integrate channel correlation analysis into P300 detection. This work is distinguished by two key contributions. First, a coefficient matrix is introduced and constructed for multiple channels with the elements indicating channel correlations. Agglomerative clustering is applied to group correlated channels. Second, the statistics of central tendency are used to fuse the information of correlated channels and generate virtual channels. The generated virtual channels can extend the EEG signals and lift up the signal-to-noise ratio. The correlated features from virtual channels are combined with original signals for classification and the outputs of discriminative classifier are used to determine the characters for spelling. Experimental results prove the effectiveness and efficiency of the channel correlation analysis based framework. Compared with the state-of-the-art, the recognition rate was increased by both 6% with 5 and 10 epochs by the proposed framework.

  • Comparison of Muscle Stimulation Groups for Simplified Practical FES Cycling Control with Cycling Wheelchair: An Experimental Test with Healthy Subjects

    Takashi WATANABE  Yuta KARASAWA  

     
    PAPER-Rehabilitation Engineering and Assistive Technology

      Pubricized:
    2016/01/26
      Vol:
    E99-D No:5
      Page(s):
    1345-1352

    The cycling wheelchair “Profhand” was developed in Japan as locomotion and lower limb rehabilitation device for hemiplegic subjects and elderly persons. Functional electrical stimulation (FES) control of paralyzed lower limbs enables application of the Profhand to paraplegic subjects as a rehabilitation device. In this paper, simplified muscle stimulation control for FES cycling with Profhand was examined for practical application, because cycling speed was low and not stable in our preliminary study and there was a difficulty in setting stimulation electrodes for the gluteus maximus. First, a guideline of target cycling speed to be achieved by FES cycling was determined from voluntary cycling with healthy subjects in order to evaluate FES cycling control. The cycling speed of 0.6m/s was determined as acceptable value and 1.0m/s was as ideal one. Then, stimulation to the gluteus maximus and that to the dorsiflexor muscles in addition to the quadriceps femoris were examined for simple FES cycling control for Profhand with healthy subjects. Stimulation timing was adjusted automatically during cycling based on muscle response time to electrical stimulation and cycling speed, which was shown to be effective for FES cycling control. Simple FES cycling control with Profhand removing stimulation to the gluteus maximus was found to be feasible. Stimulation to the dorsiflexor muscles with the quadriceps femoris was suggested to be effective for practical, simple FES cycling with Profhand in case of removing the gluteus maximus stimulation.

  • Analysis of Density-Adaptive Spectrum Access for Cognitive Radio Sensor Networks

    Lei ZHANG  Tiecheng SONG  Jing HU  Xu BAO  

     
    PAPER-Network

      Vol:
    E99-B No:5
      Page(s):
    1101-1109

    Cognitive radio sensor networks (CRSNs) with their dynamic spectrum access capability appear to be a promising solution to address the increasing challenge of spectrum crowding faced by the traditional WSN. In this paper, through maximizing the utility index of the CRSN, a node density-adaptive spectrum access strategy for sensor nodes is proposed that takes account of the node density in a certain event-driven region. For this purpose, considering the burst real-time data traffic, we analyze the energy efficiency (EE) and the packet failure rate (PFR) combining network disconnected rate (NDR) and packet loss rate (PLR) during the channel switching interval (CSI) for both underlay and interweave spectrum access schemes. Numerical results confirm the validity of our theoretical analyses and indicate that the adaptive node density threshold (ANDT) exists for underlay and interweave spectrum access scheme switching.

  • Investigation of Electron Irradiation Effects on Graphene by Optical and Electrical Characterization

    Hiroshi OKADA  Akira NAGAHARA  

     
    BRIEF PAPER

      Vol:
    E99-C No:5
      Page(s):
    559-562

    Effects of electron beam irradiation at 15 keV on graphene are investigated by optical and electron characterization using Raman and two-terminal resistance measurement and photoconductivity measurement. In Raman spectra, increase of defects in D-peak to G-peak ratio by increase of electron irradiation by 70 mC/cm2 was found. Resistance of graphene showed an increase after the irradiation. Rather sensitive change was found in photoconductivity of irradiated graphene under ultra-violet (UV) illumination, suggesting irradiation induced defects affect a photoconductivity properties of the graphene.

  • A Perceptually Motivated Approach for Speech Enhancement Based on Deep Neural Network

    Wei HAN  Xiongwei ZHANG  Gang MIN  Meng SUN  

     
    LETTER-Speech and Hearing

      Vol:
    E99-A No:4
      Page(s):
    835-838

    In this letter, a novel perceptually motivated single channel speech enhancement approach based on Deep Neural Network (DNN) is presented. Taking into account the good masking properties of the human auditory system, a new DNN architecture is proposed to reduce the perceptual effect of the residual noise. This new DNN architecture is directly trained to learn a gain function which is used to estimate the power spectrum of clean speech and shape the spectrum of the residual noise at the same time. Experimental results demonstrate that the proposed perceptually motivated speech enhancement approach could achieve better objective speech quality when tested with TIMIT sentences corrupted by various types of noise, no matter whether the noise conditions are included in the training set or not.

401-420hit(2504hit)