The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SPE(2504hit)

321-340hit(2504hit)

  • A Balanced Decision Tree Based Heuristic for Linear Decomposition of Index Generation Functions

    Shinobu NAGAYAMA  Tsutomu SASAO  Jon T. BUTLER  

     
    PAPER-Logic Design

      Pubricized:
    2017/05/19
      Vol:
    E100-D No:8
      Page(s):
    1583-1591

    Index generation functions model content-addressable memory, and are useful in virus detectors and routers. Linear decompositions yield simpler circuits that realize index generation functions. This paper proposes a balanced decision tree based heuristic to efficiently design linear decompositions for index generation functions. The proposed heuristic finds a good linear decomposition of an index generation function by using appropriate cost functions and a constraint to construct a balanced tree. Since the proposed heuristic is fast and requires a small amount of memory, it is applicable even to large index generation functions that cannot be solved in a reasonable time by existing heuristics. This paper shows time and space complexities of the proposed heuristic, and experimental results using some large examples to show its efficiency.

  • Health Checkup Data Analysis Focusing on Body Mass Index

    Mizuki HIGUCHI  Kenichi SORACHI  Yutaka HATA  

     
    PAPER-Soft Computing

      Pubricized:
    2017/05/19
      Vol:
    E100-D No:8
      Page(s):
    1634-1641

    This paper analyzes the relationship between the changes of Body Mass Index (BMI) and those of the other health checkup data in one year. We divide all data of the subjects into 13 groups by their BMI changes. We calculate these variations in each group and classify the variations into gender, age, and BMI. As the result by gender, men were more influenced by the changes of BMI than women at Hb-A1c, AC, GPT, GTP, and TG. As the result of classification by age, they were influenced by the changes of BMI at Hb-A1c, GPT, and DTP by age. As the result of classification by BMI, inspection values such as GOT, GPT, and GTP decreased according to the decrement of BMI. Next we show the result on gender-age, gender-BMI, and age-BMI clusters. Our results showed that subjects should reduce BMI values in order to improve lifestyle-related diseases. Several inspection values would be improved according to decrement of BMI. Conversely, it may be difficult for subjects with under 18 of BMI to manage them by BMI. We show a possibility that we could prevent the lifestyle disease by controlling BMI.

  • Double-Rate Tomlinson-Harashima Precoding for Multi-Valued Data Transmission

    Yosuke IIJIMA  Yasushi YUMINAKA  

     
    PAPER-VLSI Architecture

      Pubricized:
    2017/05/19
      Vol:
    E100-D No:8
      Page(s):
    1611-1617

    The growing demand for high-speed data communication has continued to meet the need for ever-increasing I/O bandwidth in recent VLSI systems. However, signal integrity issues, such as intersymbol interference (ISI) and reflections, make the channel band-limited at high-speed data rates. We propose high-speed data transmission techniques for VLSI systems using Tomlinson-Harashima precoding (THP). Because THP can eliminate ISI by inverting the characteristics of channels with limited peak and average power at the transmitter, it is suitable for implementing advanced low-voltage and high-speed VLSI systems. This paper presents a novel double-rate THP equalization technique especially intended for multi-valued data transmission to further improve THP performance. Simulation and measurement results show that the proposed THP equalization with a double sampling rate can enhance the data transition time and, therefore, improve the eye opening.

  • On Map-Based Analysis of Item Relationships in Specific Health Examination Data for Subjects Possibly Having Diabetes

    Naotake KAMIURA  Shoji KOBASHI  Manabu NII  Takayuki YUMOTO  Ichiro YAMAMOTO  

     
    PAPER-Soft Computing

      Pubricized:
    2017/05/19
      Vol:
    E100-D No:8
      Page(s):
    1625-1633

    In this paper, we present a method of analyzing relationships between items in specific health examination data, as one of the basic researches to address increases of lifestyle-related diseases. We use self-organizing maps, and pick up the data from the examination dataset according to the condition specified by some item values. We then focus on twelve items such as hemoglobin A1c (HbA1c), aspartate transaminase (AST), alanine transaminase (ALT), gamma-glutamyl transpeptidase (γ-GTP), and triglyceride (TG). We generate training data presented to a map by calculating the difference between item values associated with successive two years and normalizing the values of this calculation. We label neurons in the map on condition that one of the item values of training data is employed as a parameter. We finally examine the relationships between items by comparing results of labeling (clusters formed in the map) to each other. From experimental results, we separately reveal the relationships among HbA1c, AST, ALT, γ-GTP and TG in the unfavorable case of HbA1c value increasing and those in the favorable case of HbA1c value decreasing.

  • Voice Conversion Using Input-to-Output Highway Networks

    Yuki SAITO  Shinnosuke TAKAMICHI  Hiroshi SARUWATARI  

     
    LETTER-Speech and Hearing

      Pubricized:
    2017/04/28
      Vol:
    E100-D No:8
      Page(s):
    1925-1928

    This paper proposes Deep Neural Network (DNN)-based Voice Conversion (VC) using input-to-output highway networks. VC is a speech synthesis technique that converts input features into output speech parameters, and DNN-based acoustic models for VC are used to estimate the output speech parameters from the input speech parameters. Given that the input and output are often in the same domain (e.g., cepstrum) in VC, this paper proposes a VC using highway networks connected from the input to output. The acoustic models predict the weighted spectral differentials between the input and output spectral parameters. The architecture not only alleviates over-smoothing effects that degrade speech quality, but also effectively represents the characteristics of spectral parameters. The experimental results demonstrate that the proposed architecture outperforms Feed-Forward neural networks in terms of the speech quality and speaker individuality of the converted speech.

  • Incidence Rate Prediction of Diabetes from Medical Checkup Data

    Masakazu MORIMOTO  Naotake KAMIURA  Yutaka HATA  Ichiro YAMAMOTO  

     
    PAPER-Soft Computing

      Pubricized:
    2017/05/19
      Vol:
    E100-D No:8
      Page(s):
    1642-1646

    To promote effective guidance by health checkup results, this paper predict a likelihood of developing lifestyle-related diseases from health check data. In this paper, we focus on the fluctuation of hemoglobin A1c (HbA1c) value, which deeply connected with diabetes onset. Here we predict incensement of HbA1c value and examine which kind of health checkup item has important role for HbA1c fluctuation. Our experimental results show that, when we classify the subjects according to their gender and triglyceride (TG) fluctuation value, we will effectively evaluate the risk of diabetes onset for each class.

  • Variable Tap-Length NLMS Algorithm with Adaptive Parameter

    Yufei HAN  Mingjiang WANG  Boya ZHAO  

     
    LETTER-Digital Signal Processing

      Vol:
    E100-A No:8
      Page(s):
    1720-1723

    Improved fractional variable tap-length adaptive algorithm that contains Sigmoid limited fluctuation function and adaptive variable step-size of tap-length based on fragment-full error is presented. The proposed algorithm can solve many deficiencies in previous algorithm, comprising small convergence rate and weak anti-interference ability. The parameters are able to modify reasonably on the basis of different situations. The Sigmoid constrained function can decrease the fluctuant amplitude of the instantaneous errors effectively and improves the ability of anti-noise interference. Simulations demonstrate that the proposed algorithm equips better performance.

  • Self-Organized Beam Scheduling as an Enabler for Coexistence in 5G Unlicensed Bands Open Access

    Maziar NEKOVEE  Yinan QI  Yue WANG  

     
    INVITED PAPER-Wireless Communication Technologies

      Pubricized:
    2017/02/08
      Vol:
    E100-B No:8
      Page(s):
    1181-1189

    In order to support user data rates of Gbps and above in the fifth generation (5G) communication systems, millimeter wave (mm-wave) communication is proposed as one of the most important enabling technologies. In this paper, we consider the spectrum bands shared by 5G cellular base stations (BS) and some existing networks, such as WiGig and proposed a method for spectrally efficient coexistence of multiple interfering BSs through adaptive self-organized beam scheduling. These BSs might use multiple radio access technologies belonging to multiple operators and are deployed in the unlicensed bands, such as 60GHz. Different from the recently emerging coexistence scenarios in the unlicensed 5GHz band, where the proposed methods are based on omni-directional transmission, beamforming needs to be employed in mm-wave bands to combat the high path loss problem. The proposed method is concerned with this new scenario of communication in the unlicensed bands where (a) beam-forming is mandatory to combat severe path loss, (b) without optimal scheduling of beams mutual interference could be severe due to the possibility of beam-collisions, (c) unlike LTE which users time-frequency resource blocks, a new resource, i.e., the beam direction, is used as mandatory feature. We propose in this paper a novel multi-RAT coexistence mechanism where neighbouring 5G BSs, each serving their own associated users, schedule their beam configurations in a self-organized manner such that their own utility function, e.g. spectral efficiency, is maximized. The problem is formulated as a combinatorial optimization problem and it is shown via simulations that our proposed distributed algorithms yield a comparable spectral efficiency for the entire networks as that using an exhaustive search, which requires global coordination among coexisting RATs and also has a much higher algorithmic complexity.

  • Fronthaul Constrained Coordinated Transmission in Cloud-Based 5G Radio Access Network: Energy Efficiency Perspective

    Ying SUN  Yang WANG  Yuqing ZHONG  

     
    PAPER-Network

      Pubricized:
    2017/02/08
      Vol:
    E100-B No:8
      Page(s):
    1343-1351

    The cloud radio access network (C-RAN) is embracing unprecedented popularity in the evolution of current RAN towards 5G. One of the essential benefits of C-RAN is facilitating cooperative transmission to enhance capacity and energy performances. In this paper, we argue that the conventional symmetric coordination in which all antennas participate in transmission does not necessarily lead to an energy efficient C-RAN. Further, the current assessments of energy consumption should be modified to match this shifted paradigm in network architecture. Towards this end, this paper proposes an asymmetric coordination scheme to optimize the energy efficiency of C-RAN. Specifically, asymmetric coordination is approximated and formulated as a joint antenna selection and power allocation problem, which is then solved by a proposed sequential-iterative algorithm. A modular power consumption model is also developed to convert the computational complexity of coordination into baseband power consumption. Simulations verify the performance benefits of our proposed asymmetric coordination in effectively enhancing system energy efficiency.

  • A Near-Optimal Sensing Schedule for Spectrum Access in Multi-Hop Cognitive Radio Network

    Yun LI  Tohru ASAMI  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2016/12/29
      Vol:
    E100-B No:7
      Page(s):
    1160-1171

    The present paper proposes a dynamic spectrum access policy for multi-hop cognitive radio networks (CRNs), where the transmission in each hop suffers a delay waiting for the communication channel to become available. Recognizing the energy constraints, we assume that each secondary user (SU) in the network is powered by a battery with finite initial energy. We develop an energy-efficient policy for CRNs using the Markov decision process, which searches for spectrum opportunities without a common communication channel and assigns each sensor's decision to every time slot. We first consider a single-sensor scenario. Due to the intermittent activation of the sensor, achieving the optimal sensing schedule requires excessive complexity and is computationally intractable, owing to the fact that the state space of the Markov decision process evolves exponentially with time variance. In order to overcome this difficulty, we propose a state-reduced suboptimal policy by relaxing the constrained state space, i.e., assuming that the electrical energy of a node is infinite, because this state-reduced suboptimal approach can substantially reduce the complexity of decision-making for CRNs. We then analyze the performance of the proposed policy and compare it with the optimal solution. Furthermore, we verify the performance of this spectrum access policy under real conditions in which the electrical energy of a node is finite. The proposed spectrum access policy uses the dynamic information of each channel. We prove that this schedule is a good approximation for the true optimal schedule, which is impractical to obtain. According to our theoretical analysis, the proposed policy has less complexity but comparable performance. It is proved that when the operating time of the CRN is sufficiently long, the data reception rate on the sink node side will converge to the optimal rate with probability 1. Based on the results for the single-sensor scenario, the proposed schedule is extended to a multi-hop CRN. The proposed schedule can achieve synchronization between transmitter and receiver without relying on a common control channel, and also has near-optimal performance. The performance of the proposed spectrum access policy is confirmed through simulation.

  • A Spectrum-Sharing Approach in Heterogeneous Networks Based on Multi-Objective Optimization

    Runze WU  Jiajia ZHU  Liangrui TANG  Chen XU  Xin WU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2016/12/27
      Vol:
    E100-B No:7
      Page(s):
    1145-1151

    Deploying low power nodes (LPNs), which reuse the spectrum licensed to a macrocell network, is considered to be a promising way to significantly boost network capacity. Due to the spectrum-sharing, the deployment of LPNs could trigger the severe problem of interference including intra-tier interference among dense LPNs and inter-tier interference between LPNs and the macro base station (MBS), which influences the system performance strongly. In this paper, we investigate a spectrum-sharing approach in the downlink for two-tier networks, which consists of small cells (SCs) with several LPNs and a macrocell with a MBS, aiming to mitigate the interference and improve the capacity of SCs. The spectrum-sharing approach is described as a multi-objective optimization problem. The problem is solved by the nondominated sorting genetic algorithm version II (NSGA-II), and the simulations show that the proposed spectrum-sharing approach is superior to the existing one.

  • Latency-Aware Selection of Check Variables for Soft-Error Tolerant Datapath Synthesis

    Junghoon OH  Mineo KANEKO  

     
    LETTER

      Vol:
    E100-A No:7
      Page(s):
    1506-1510

    This letter proposes a heuristic algorithm to select check variables, which are points of comparison for error detection, for soft-error tolerant datapaths. Our soft-error tolerance scheme is based on check-and-retry computation and an efficient resource management named speculative resource sharing (SRS). Starting with the smallest set of check variables, the proposed algorithm repeats to add new check variable one by one incrementally and find the minimum latency solution among the series of generated solutions. During the process, each new check variable is selected so that the opportunity of SRS is enlarged. Experimental results show that improvements in latency are achieved compared with the choice of the smallest set of check variables.

  • A Formal Modeling Tool for Exploratory Modeling in Software Development

    Tomohiro ODA  Keijiro ARAKI  Peter GORM LARSEN  

     
    PAPER-Formal tools

      Pubricized:
    2017/03/07
      Vol:
    E100-D No:6
      Page(s):
    1210-1217

    The software development process is front-loaded when formal specification is deployed and as a consequence more problems are identified and solved at an earlier point of time. This places extra importance on the quality and efficiency of the different formal specification tasks. We use the term “exploratory modeling” to denote the modeling that is conducted during the early stages of software development before the requirements are clearly understood. We believe tools that support not only rigorous but also flexible construction of the specification at the same time are helpful in such exploratory modeling phases. This paper presents a web-based IDE named VDMPad to demonstrate the concept of exploratory modeling. VDMPad has been evaluated by experienced professional VDM engineers from industry. The positive evaluation resulting from such industrial users are presented. It is believed that flexible and rigorous tools for exploratory modeling will help to improve the productivity of the industrial software developments by making the formal specification phase more efficient.

  • Toward Large-Pixel Number High-Speed Imaging Exploiting Time and Space Sparsity

    Naoki NOGAMI  Akira HIRABAYASHI  Takashi IJIRI  Jeremy WHITE  

     
    PAPER-Digital Signal Processing

      Vol:
    E100-A No:6
      Page(s):
    1279-1285

    In this paper, we propose an algorithm that enhances the number of pixels for high-speed imaging. High-speed cameras have a principle problem that the number of pixels reduces when the number of frames per second (fps) increases. To enhance the number of pixels, we suppose an optical structure that block-randomly selects some percent of pixels in an image. Then, we need to reconstruct the entire image. For this, a state-of-the-art method takes three-dimensional reconstruction strategy, which requires a heavy computational cost in terms of time. To reduce the cost, the proposed method reconstructs the entire image frame-by-frame using a new cost function exploiting two types of sparsity. One is within each frame and the other is induced from the similarity between adjacent frames. The latter further means not only in the image domain, but also in a sparsifying transformed domain. Since the cost function we define is convex, we can find the optimal solution using a convex optimization technique with small computational cost. We conducted simulations using grayscale image sequences. The results show that the proposed method produces a sequence, mostly the same quality as the state-of-the-art method, with dramatically less computational time.

  • Noise Estimation for Speech Enhancement Based on Quasi-Gaussian Distributed Power Spectrum Series by Radical Root Transformation

    Tian YE  Yasunari YOKOTA  

     
    PAPER-Information Theory

      Vol:
    E100-A No:6
      Page(s):
    1306-1314

    This contribution presents and analyzes the statistical regularity related to the noise power spectrum series and the speech spectrum series. It also undertakes a thorough inquiry of the quasi-Gaussian distributed power spectrum series obtained using the radical root transformation. Consequently, a noise-estimation algorithm is proposed for speech enhancement. This method is effective for separating the noise power spectrum from the noisy speech power spectrum. In contrast to standard noise-estimation algorithms, the proposed method requires no speech activity detector. It was confirmed to be conceptually simple and well suited to real-time implementations. Practical experiment tests indicated that our method is preferred over previous methods.

  • Adaptive Elastic Spectrum Allocation Based on Traffic Fluctuation Estimate under Time-Varying Traffic in Flexible OFDM-Based Optical Networks

    Mirai CHINO  Misato KAMIO  Jun MATSUMOTO  Eiji OKI  Satoru OKAMOTO  Naoaki YAMANAKA  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2016/12/12
      Vol:
    E100-B No:6
      Page(s):
    962-973

    A flexible orthogonal frequency-division multiplexing optical network enables the bandwidth to be flexibly changed by changing the number of sub-carriers. We assume that users request to dynamically change the number of sub-carriers. Dynamic bandwidth changes allow the network resources to be used more efficiently but each change takes a significant amount of time to complete. Service centric resource allocation must be considered in terms of the waiting time needed to change the number of sub-carriers. If the user demands drastically increase such as just after a disaster, the waiting time due to a chain-change of bandwidth becomes excessive because disaster priority telephone services are time-critical. This paper proposes a Grouped-elastic spectrum allocation scheme to satisfy the tolerable waiting time of the service in an optical fiber link. Spectra are grouped to restrict a waiting time in the proposed scheme. In addition, the proposed scheme determines a bandwidth margin between neighbor spectra to spectra to prevent frequent reallocation by estimating real traffic behavior in each group. Numerical results show that the bandwidth requirements can be minimized while satisfying the waiting time constraints. Additionally measurement granularity and channel alignment are discussed.

  • Integration of Spatial Cue-Based Noise Reduction and Speech Model-Based Source Restoration for Real Time Speech Enhancement

    Tomoko KAWASE  Kenta NIWA  Masakiyo FUJIMOTO  Kazunori KOBAYASHI  Shoko ARAKI  Tomohiro NAKATANI  

     
    PAPER-Digital Signal Processing

      Vol:
    E100-A No:5
      Page(s):
    1127-1136

    We propose a microphone array speech enhancement method that integrates spatial-cue-based source power spectral density (PSD) estimation and statistical speech model-based PSD estimation. The goal of this research was to clearly pick up target speech even in noisy environments such as crowded places, factories, and cars running at high speed. Beamforming with post-Wiener filtering is commonly used in many conventional studies on microphone-array noise reduction. For calculating a Wiener filter, speech/noise PSDs are essential, and they are estimated using spatial cues obtained from microphone observations. Assuming that the sound sources are sparse in the temporal-spatial domain, speech/noise PSDs may be estimated accurately. However, PSD estimation errors increase under circumstances beyond this assumption. In this study, we integrated speech models and PSD-estimation-in-beamspace method to correct speech/noise PSD estimation errors. The roughly estimated noise PSD was obtained frame-by-frame by analyzing spatial cues from array observations. By combining noise PSD with the statistical model of clean-speech, the relationships between the PSD of the observed signal and that of the target speech, hereafter called the observation model, could be described without pre-training. By exploiting Bayes' theorem, a Wiener filter is statistically generated from observation models. Experiments conducted to evaluate the proposed method showed that the signal-to-noise ratio and naturalness of the output speech signal were significantly better than that with conventional methods.

  • Bidirectional Vehicle-to-Vehicle Communication and Ranging Systems with Spread Spectrum Techniques Using Laser Radar and Visible Light

    Akira John SUZUKI  Kiyoshi MIZUI  

     
    PAPER-Intelligent Transport System

      Vol:
    E100-A No:5
      Page(s):
    1206-1214

    In autonomous vehicles, driving in traffic poses significant challenges in vehicle-to-vehicle (V2V) communication and ranging. Currently interest centers on enhanced V2V communication with multi-sensor and cooperative approaches. In this paper we propose a novel bidirectional Laser Radar Visible Light Bidirectional Communication Boomerang System (LRVLB-ComBo). LRVLB-ComBo affords nuanced real-time two-way V2V communication as a basis for complex but reliable decision-making. Our approach involves combining existing automotive laser radar with visible light boomerang systems using THSS techniques. System simulations were performed using a random mix of extraneous interference pulse to evaluate system sensitivity to noise. Results suggest that LRVLB-ComBo is a viable two-way V2V communication system with increased ranging accuracy, enabling provision of detailed bidirectional data exchange for ITS precision, energy efficiency and safety.

  • Performance Analysis of Distributed OSTBC-MIMO Systems Using Adaptive M-QAM Transmission over i.n.i.d. Generalized-K Fading Channels

    Jie HE  Kun XIAO  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2016/12/06
      Vol:
    E100-B No:5
      Page(s):
    843-851

    In this paper, the performance of orthogonal space-time block codes (OSTBC) for distributed multiple-input multiple-output (MIMO) systems employing adaptive M-QAM transmission is investigated over independent but not necessarily identically distributed (i.n.i.d.) generalized-K fading channels with arbitrary positive integer-valued k(inversely reflects the shadowing severity) and m (inversely reflects the fading severity). Before this, i.n.i.d. generalized-K fading channel has never been considered for distributed OSTBC-MIMO systems. Especially, the effects of the shape parameter k on the distributed OSTBC-MIMO system performance are unknown. Thus, we investigate mainly the significance of the shape parameter k on the distributed OSTBC-MIMO system performance, in terms of the average symbol error probability (SEP), outage probability, and spectral efficiency (SE). By establishing the system model, the approximated probability density function (PDF) of the equivalent signal to noise ratio (SNR) is derived and thereafter the approximated closed-form expressions of the above performance metrics are obtained successively. Finally, the derived expressions are validated via a set of Monte-Carlo simulations and the implications of the shape parameter k on the overall performance are highlighted.

  • Optimizing Sensing Scheduling for Cooperative Spectrum Sensing in Cognitive Radio Networks

    Tran-Nhut-Khai HOAN  Vu-Van HIEP  Insoo KOO  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2016/12/01
      Vol:
    E100-B No:5
      Page(s):
    884-892

    In this paper, we consider optimal sensing scheduling for sequential cooperative spectrum sensing (SCSS) technique in cognitive radio networks (CRNs). Activities of primary users (PU) on a primary channel are captured by using a two states discrete time Markov chain process and a soft combination is considered at the FC. Based on the theory of optimal stopping, we propose an algorithm to optimize the cooperative sensing process in which the FC sequentially asks each CU to report its sensing result until the stopping condition that provides the maximum expected throughput for the CRN is satisfied. Simulation result shows that the performance of the proposed scheme can be improved by further shortening the reporting overhead and reducing the probability of false alarm in comparison to other schemes in literature. In addition, the collision ratio on the primary channel is also investigated.

321-340hit(2504hit)