The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

2401-2420hit(21534hit)

  • A New DY Conjugate Gradient Method and Applications to Image Denoising

    Wei XUE  Junhong REN  Xiao ZHENG  Zhi LIU  Yueyong LIANG  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2018/09/14
      Vol:
    E101-D No:12
      Page(s):
    2984-2990

    Dai-Yuan (DY) conjugate gradient method is an effective method for solving large-scale unconstrained optimization problems. In this paper, a new DY method, possessing a spectral conjugate parameter βk, is presented. An attractive property of the proposed method is that the search direction generated at each iteration is descent, which is independent of the line search. Global convergence of the proposed method is also established when strong Wolfe conditions are employed. Finally, comparison experiments on impulse noise removal are reported to demonstrate the effectiveness of the proposed method.

  • A Multilevel Indexing Method for Approximate Geospatial Aggregation Analysis

    Luo CHEN  Ye WU  Wei XIONG  Ning JING  

     
    LETTER-Data Engineering, Web Information Systems

      Pubricized:
    2018/09/26
      Vol:
    E101-D No:12
      Page(s):
    3242-3245

    In terms of spatial online aggregation, traditional stand-alone serial methods gradually become limited. Although parallel computing is widely studied nowadays, there scarcely has research conducted on the index-based parallel online aggregation methods, specifically for spatial data. In this letter, a parallel multilevel indexing method is proposed to accelerate spatial online aggregation analyses, which contains two steps. In the first step, a parallel aR tree index is built to accelerate aggregate query locally. In the second step, a multilevel sampling data pyramid structure is built based on the parallel aR tree index, which contribute to the concurrent returned query results with certain confidence degree. Experimental and analytical results verify that the methods are capable of handling billion-scale data.

  • Security Evaluation for Block Scrambling-Based Image Encryption Including JPEG Distortion against Jigsaw Puzzle Solver Attacks

    Tatsuya CHUMAN  Hitoshi KIYA  

     
    LETTER-Image

      Vol:
    E101-A No:12
      Page(s):
    2405-2408

    Encryption-then-Compression (EtC) systems have been considered for the user-controllable privacy protection of social media like Twitter. The aim of this paper is to evaluate the security of block scrambling-based encryption schemes, which have been proposed to construct EtC systems. Even though this scheme has enough key spaces against brute-force attacks, each block in encrypted images has almost the same correlation as that of original images. Therefore, it is required to consider the security from different viewpoints from number theory-based encryption methods with provable security such as RSA and AES. In this paper, we evaluate the security of encrypted images including JPEG distortion by using automatic jigsaw puzzle solvers.

  • A Novel Speech Enhancement System Based on the Coherence-Based Algorithm and the Differential Beamforming

    Lei WANG  Jie ZHU  

     
    LETTER-Speech and Hearing

      Pubricized:
    2018/08/31
      Vol:
    E101-D No:12
      Page(s):
    3253-3257

    This letter proposes a novel speech enhancement system based on the ‘L’ shaped triple-microphone. The modified coherence-based algorithm and the first-order differential beamforming are combined to filter the spatial distributed noise. The experimental results reveal that the proposed algorithm achieves significant performance in spatial filtering under different noise scenarios.

  • Evaluating “Health Status” for DNS Resolvers

    Keyu LU  Zhaoxin ZHANG  

     
    PAPER-Internet

      Pubricized:
    2018/06/22
      Vol:
    E101-B No:12
      Page(s):
    2409-2424

    The Domain Name System (DNS) maps domain names to IP addresses. It is an important infrastructure in the Internet. Recently, DNS has experienced various security threats. DNS resolvers experience the security threats most frequently, since they interact with clients and they are the largest group of domain name servers. In order to eliminate security threats against DNS resolvers, it is essential to improve their “health status”. Since DNS resolvers' owners are not clear which DNS resolvers should be improved and how to improve “health status”, the evaluation of “health status” for DNS resolvers has become vital. In this paper, we emphasize five indicators describing “health status” for DNS resolvers, including security, integrity, availability, speed and stability. We also present nine metrics measuring the indicators. Based on the measurement of the metrics, we present a “health status” evaluation method with factor analysis. To validate our method, we measured and evaluated more than 30,000 DNS resolvers in China and Japan. The results showed that the proposed “health status” evaluation method could describe “health status” well. We also introduce instructions for evaluating a small number of DNS resolvers. And we discuss DNSSEC and its effects on resolution speed. At last, we make suggestions for inspecting and improving “health status” of DNS resolvers.

  • A Chaotic Artificial Bee Colony Algorithm Based on Lévy Search

    Shijie LIN  Chen DONG  Zhiqiang WANG  Wenzhong GUO  Zhenyi CHEN  Yin YE  

     
    LETTER-Algorithms and Data Structures

      Vol:
    E101-A No:12
      Page(s):
    2472-2476

    A Lévy search strategy based chaotic artificial bee colony algorithm (LABC) is proposed in this paper. The chaotic sequence, global optimal mechanism and Lévy flight mechanism were introduced respectively into the initialization, the employed bee search and the onlooker bee search. The experiments show that the proposed algorithm performed better in convergence speed, global search ability and optimization accuracy than other improved ABC.

  • View Priority Based Threads Allocation and Binary Search Oriented Reweight for GPU Accelerated Real-Time 3D Ball Tracking

    Yilin HOU  Ziwei DENG  Xina CHENG  Takeshi IKENAGA  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2018/08/31
      Vol:
    E101-D No:12
      Page(s):
    3190-3198

    In real-time 3D ball tracking of sports analysis in computer vision technology, complex algorithms which assure the accuracy could be time-consuming. Particle filter based algorithm has a large potential to accelerate since the algorithm between particles has the chance to be paralleled in heterogeneous CPU-GPU platform. Still, with the target multi-view 3D ball tracking algorithm, challenges exist: 1) serial flowchart for each step in the algorithm; 2) repeated processing for multiple views' processing; 3) the low degree of parallelism in reweight and resampling steps for sequential processing. On the CPU-GPU platform, this paper proposes the double stream system flow, the view priority based threads allocation, and the binary search oriented reweight. Double stream system flow assigns tasks which there is no data dependency exists into different streams for each frame processing to achieve parallelism in system structure level. View priority based threads allocation manipulates threads in multi-view observation task. Threads number is view number multiplied by particles number, and with view priority assigning, which could help both memory accessing and computing achieving parallelism. Binary search oriented reweight reduces the time complexity by avoiding to generate cumulative distribution function and uses an unordered array to implement a binary search. The experiment is based on videos which record the final game of an official volleyball match (2014 Inter-High School Games of Men's Volleyball held in Tokyo Metropolitan Gymnasium in Aug. 2014) and the test sequences are taken by multiple-view system which is made of 4 cameras locating at the four corners of the court. The success rate achieves 99.23% which is the same as target algorithm while the time consumption has been accelerated from 75.1ms/frame in CPU environment to 3.05ms/frame in the proposed system which is 24.62 times speed up, also, it achieves 2.33 times speedup compared with basic GPU implemented work.

  • A Unified Approach to Error Exponents for Multiterminal Source Coding Systems

    Shigeaki KUZUOKA  

     
    PAPER-Shannon theory

      Vol:
    E101-A No:12
      Page(s):
    2082-2090

    Two kinds of problems - multiterminal hypothesis testing and one-to-many lossy source coding - are investigated in a unified way. It is demonstrated that a simple key idea, which is developed by Iriyama for one-to-one source coding systems, can be applied to multiterminal source coding systems. In particular, general bounds on the error exponents for multiterminal hypothesis testing and one-to-many lossy source coding are given.

  • New Context-Adaptive Arithmetic Coding Scheme for Lossless Bit Rate Reduction of Parametric Stereo in Enhanced aacPlus

    Hee-Suk PANG  Jun-seok LIM  Hyun-Young JIN  

     
    LETTER-Speech and Hearing

      Pubricized:
    2018/09/18
      Vol:
    E101-D No:12
      Page(s):
    3258-3262

    We propose a new context-adaptive arithmetic coding (CAAC) scheme for lossless bit rate reduction of parametric stereo (PS) in enhanced aacPlus. Based on the probability analysis of stereo parameters indexes in PS, we propose a stereo band-dependent CAAC scheme for PS. We also propose a new coding structure of the scheme which is simple but effective. The proposed scheme has normal and memory-reduced versions, which are superior to the original and conventional schemes and guarantees significant bit rate reduction of PS. The proposed scheme can be an alternative to the original PS coding scheme at low bit rate, where coding efficiency is very important.

  • Design and Experiment of Via-Less and Small-Radiation Waveguide to Microstrip Line Transitions for Millimeter Wave Radar Modules

    Takashi MARUYAMA  Shigeo UDAGAWA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2018/06/04
      Vol:
    E101-B No:12
      Page(s):
    2425-2434

    We propose waveguide to microstrip line transitions for automotive millimeter wave radar modules. The transitions perpendicularly connect one waveguide and one or two microstrip lines. The configuration is simple because it consists of a waveguide and a dielectric substrate with copper foils. Additionally the transitions do not need via holes on the substrate. It leads to lower costs and improved reliability. We have already proposed a via-less transition by using multi-stage impedance transformers. The impedance transformers are used for suppressing undesirable radiation from the transition as well as impedance matching. In this paper, we propose a new transition with the microstrip lines on the long axis of the waveguide while most transitions place the microstrip lines on the minor axis (electric field direction) of the waveguide. Though our transition uses bend structures of microstrip lines, which basically cause radiation, our optimized configuration can keep small radiation. We also design a transition with a single microstrip line. The proposed transition with 2 microstrip lines can be modified to the 1 microstrip line version with minimum radiation loss. Electromagnetic simulations confirm the small radiation levels expected. Additionally we fabricate the transitions with back to back structure and determine the transmission and radiation performance. We also fabricates the transition for a patch array antenna. We confirm that the undesirable radiation from the proposed transition is small and the radiation pattern of the array antenna is not worsen by the transition.

  • Currency Preserving Query: Selecting the Newest Values from Multiple Tables

    Mohan LI  Yanbin SUN  

     
    PAPER-Data Engineering, Web Information Systems

      Pubricized:
    2018/08/31
      Vol:
    E101-D No:12
      Page(s):
    3059-3072

    In many applications, tables are distributively stored in different data sources, but the frequency of updates on each data source is different. Some techniques have been proposed to effectively express the temporal orders between different values, and the most current, i.e. up-to-date, value of a given data item can be easily picked up according to the temporal orders. However, the currency of the data items in the same table may be different. That is, when a user asks for a table D, it cannot be ensured that all the most current values of the data items in D are stored in a single table. Since different data sources may have overlaps, we can construct a conjunctive query on multiple tables to get all the required current values. In this paper, we formalize the conjunctive query as currency preserving query, and study how to generate the minimized currency preserving query to reduce the cost of visiting different data sources. First, a graph model is proposed to represent the distributed tables and their relationships. Based on the model, we prove that a currency preserving query is equivalent to a terminal tree in the graph, and give an algorithm to generate a query from a terminal tree. After that, we study the problem of finding minimized currency preserving query. The problem is proved to be NP-hard, and some heuristics strategies are provided to solve the problem. Finally, we conduct experiments on both synthetic and real data sets to verify the effectiveness and efficiency of the proposed techniques.

  • Hidden Singer: Distinguishing Imitation Singers Based on Training with Only the Original Song

    Hosung PARK  Seungsoo NAM  Eun Man CHOI  Daeseon CHOI  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2018/08/24
      Vol:
    E101-D No:12
      Page(s):
    3092-3101

    Hidden Singer is a television program in Korea. In the show, the original singer and four imitating singers sing a song in hiding behind a screen. The audience and TV viewers attempt to guess who the original singer is by listening to the singing voices. Usually, there are few correct answers from the audience, because the imitators are well trained and highly skilled. We propose a computerized system for distinguishing the original singer from the imitating singers. During the training phase, the system learns only the original singer's song because it is the one the audience has heard before. During the testing phase, the songs of five candidates are provided to the system and the system then determines the original singer. The system uses a 1-class authentication method, in which only a subject model is made. The subject model is used for measuring similarities between the candidate songs. In this problem, unlike other existing studies that require artist identification, we cannot utilize multi-class classifiers and supervised learning because songs of the imitators and the labels are not provided during the training phase. Therefore, we evaluate the performances of several 1-class learning algorithms to choose which one is more efficient in distinguishing an original singer from among highly skilled imitators. The experiment results show that the proposed system using the autoencoder performs better (63.33%) than other 1-class learning algorithms: Gaussian mixture model (GMM) (50%) and one class support vector machines (OCSVM) (26.67%). We also conduct a human contest to compare the performance of the proposed system with human perception. The accuracy of the proposed system is found to be better (63.33%) than the average accuracy of human perception (33.48%).

  • Distributed Video Decoding on Hadoop

    Illo YOON  Saehanseul YI  Chanyoung OH  Hyeonjin JUNG  Youngmin YI  

     
    PAPER-Cluster Computing

      Pubricized:
    2018/09/18
      Vol:
    E101-D No:12
      Page(s):
    2933-2941

    Video analytics is usually time-consuming as it not only requires video decoding as a first step but also usually applies complex computer vision and machine learning algorithms to the decoded frame. To achieve high efficiency in video analytics with ever increasing frame size, many researches have been conducted for distributed video processing using Hadoop. However, most approaches focused on processing multiple video files on multiple nodes. Such approaches require a number of video files to achieve any speedup, and could easily result in load imbalance when the size of video files is reasonably long since a video file itself is processed sequentially. In contrast, we propose a distributed video decoding method with an extended FFmpeg and VideoRecordReader, by which a single large video file can be processed in parallel across multiple nodes in Hadoop. The experimental results show that a case study of face detection and SURF system achieve 40.6 times and 29.1 times of speedups respectively on a four-node cluster with 12 mappers in each node, showing good scalability.

  • Design and Analysis of A Low-Power High-Speed Accuracy-Controllable Approximate Multiplier

    Tongxin YANG  Tomoaki UKEZONO  Toshinori SATO  

     
    PAPER

      Vol:
    E101-A No:12
      Page(s):
    2244-2253

    Multiplication is a key fundamental function for many error-tolerant applications. Approximate multiplication is considered to be an efficient technique for trading off energy against performance and accuracy. This paper proposes an accuracy-controllable multiplier whose final product is generated by a carry-maskable adder. The proposed scheme can dynamically select the length of the carry propagation to satisfy the accuracy requirements flexibly. The partial product tree of the multiplier is approximated by the proposed tree compressor. An 8×8 multiplier design is implemented by employing the carry-maskable adder and the compressor. Compared with a conventional Wallace tree multiplier, the proposed multiplier reduced power consumption by between 47.3% and 56.2% and critical path delay by between 29.9% and 60.5%, depending on the required accuracy. Its silicon area was also 44.6% smaller. In addition, results from two image processing applications demonstrate that the quality of the processed images can be controlled by the proposed multiplier design.

  • Layout-Aware Fast Bridge/Open Test Generation by 2-Step Pattern Reordering

    Masayuki ARAI  Shingo INUYAMA  Kazuhiko IWASAKI  

     
    PAPER

      Vol:
    E101-A No:12
      Page(s):
    2262-2270

    As semiconductor device manufacturing technology evolves toward higher integration and reduced feature size, the gap between the defect level estimated at the design stage and that reported for fabricated devices has become wider, making it more difficult to control total manufacturing cost including test cost and cost for field failure. To estimate fault coverage more precisely considering occurrence probabilities of faults, we have proposed weighted fault coverage estimation based on critical area corresponding to each fault. Previously different fault models were handled separately; thus, pattern compression efficiency and runtime were not optimized. In this study, we propose a fast test pattern generation scheme that considers weighted bridge and open fault coverage in an integrated manner. The proposed scheme applies two-step test pattern generation, wherein test patterns generated at second step that target only bridge faults are reordered with a search window of fixed size, achieving O(n) computational complexity. Experimental results indicate that with 10% of the initial target fault size and a fixed, small window size, the proposed scheme achieves approximately 100 times runtime reduction when compared to simple greedy-based reordering, in exchange for about 5% pattern count increment.

  • Real-Time Frame-Rate Control for Energy-Efficient On-Line Object Tracking

    Yusuke INOUE  Takatsugu ONO  Koji INOUE  

     
    PAPER

      Vol:
    E101-A No:12
      Page(s):
    2297-2307

    On-line object tracking (OLOT) has been a core technology in computer vision, and its importance has been increasing rapidly. Because this technology is utilized for battery-operated products, energy consumption must be minimized. This paper describes a method of adaptive frame-rate optimization to satisfy that requirement. An energy trade-off occurs between image capturing and object tracking. Therefore, the method optimizes the frame-rate based on always changed object speed for minimizing the total energy while taking into account the trade-off. Simulation results show a maximum energy reduction of 50.0%, and an average reduction of 35.9% without serious tracking accuracy degradation.

  • Hardware Trojan Detection and Classification Based on Logic Testing Utilizing Steady State Learning

    Masaru OYA  Masao YANAGISAWA  Nozomu TOGAWA  

     
    PAPER

      Vol:
    E101-A No:12
      Page(s):
    2308-2319

    Modern digital integrated circuits (ICs) are often designed and fabricated by third parties and tools, which can make IC design/fabrication vulnerable to malicious modifications. The malicious circuits are generally referred to as hardware Trojans (HTs) and they are considered to be a serious security concern. In this paper, we propose a logic-testing based HT detection and classification method utilizing steady state learning. We first observe that HTs are hidden while applying random test patterns in a short time but most of them can be activated in a very long-term random circuit operation. Hence it is very natural that we learn steady signal-transition states of every suspicious Trojan net in a netlist by performing short-term random simulation. After that, we simulate or emulate the netlist in a very long time by giving random test patterns and obtain a set of signal-transition states. By discovering correlation between them, our method detects HTs and finds out its behavior. HTs sometimes do not affect primary outputs but just leak information over side channels. Our method can be successfully applied to those types of HTs. Experimental results demonstrate that our method can successfully identify all the real Trojan nets to be Trojan nets and all the normal nets to be normal nets, while other existing logic-testing HT detection methods cannot detect some of them. Moreover, our method can successfully detect HTs even if they are not really activated during long-term random simulation. Our method also correctly guesses the HT behavior utilizing signal transition learning.

  • A Novel Class of Structured Zero-Correlation Zone Sequence Sets

    Takafumi HAYASHI  Takao MAEDA  Anh T. PHAM  Shinya MATSUFUJI  

     
    PAPER-Sequence

      Vol:
    E101-A No:12
      Page(s):
    2171-2183

    The present paper introduces a novel type of structured ternary sequences having a zero-correlation zone (zcz) for both periodic and aperiodic correlation functions. The cross-correlation function and the side lobe of the auto-correlation function of the proposed sequence set are zero for phase shifts within the zcz. The proposed zcz sequence set can be generated from an arbitrary pair of an Hadamard matrix of order lh and a binary/ternary perfect sequence of length lp. The sequence set of order 0 is identical to the r-th row of the Hadamard matrix. For m ≥ 0, the sequence set of order (m+1) is constructed from the sequence set of order m by sequence concatenation and interleaving. The sequence set has lp subsets of size 2lh. The periodic correlation function and the aperiodic correlation function of the proposed sequence set have a zcz from -(2m+1-1) to 2m+1-1. The periodic correlation function and the aperiodic correlation function of the sequences of the i-th subset and k-th subset have a zcz from -2m+2-(lh+1)((j-k) mod lp) to -2m+2-(lh+1)((j-k) mod lp). The proposed sequence is suitable for a heterogeneous wireless network, which is one of the candidates for the fifth-generation mobile networks.

  • Extending Distributed-Based Transversal Filter Method to Spectral Amplitude Encoded CDMA

    Jorge AGUILAR-TORRENTERA  Gerardo GARCÍA-SÁNCHEZ  Ramón RODRÍGUEZ-CRUZ  Izzat Z. DARWAZEH  

     
    PAPER-Electronic Circuits

      Vol:
    E101-C No:12
      Page(s):
    953-962

    In this paper, the analog code modulation characteristics of distributed-based transversal filters (DTFs) suitable for use in spectrally encoded CDMA systems are presented. The DTF is verified as an appropriate method to use in high-speed CDMA systems as opposed to previously proposed methods, which are intended for Direct Sequence (DS) CDMA systems. The large degree of freedom of DTF design permits controlling the filter pulse response to generate well specified temporal phase-coded signals. A decoder structure that performs bipolar detection of user subbands giving rise to a Spectral-Amplitude Encoded CDMA system is considered. Practical implementations require truncating the spreading signals by a time window of duration equal to the span time of the tapped delay line. Filter functions are chosen to demodulate the matched channel and achieve improved user interference rejection avoiding the need for transversal filters featuring a large number of taps. As a proof-of-concept of the electronic SAE scheme, practical circuit designs are developed at low speeds (3-dB point at 1 GHz) demonstrating the viability of the proposal.

  • Construction of Locally Repairable Codes with Multiple Localities Based on Encoding Polynomial

    Tomoya HAMADA  Hideki YAGI  

     
    PAPER-Coding theory and techniques

      Vol:
    E101-A No:12
      Page(s):
    2047-2054

    Locally repairable codes, which can repair erased symbols from other symbols, have attracted a good deal of attention in recent years because its local repair property is effective on distributed storage systems. (ru, δu)u∈[s]-locally repairable codes with multiple localities, which are an extension of ordinary locally repairable codes, can repair δu-1 erased symbols simultaneously from a set consisting of at most ru symbols. An upper bound on the minimum distance of these codes and a construction method of optimal codes, attaining this bound with equality, were given by Chen, Hao, and Xia. In this paper, we discuss the parameter restrictions of the existing construction, and we propose explicit constructions of optimal codes with multiple localities with relaxed restrictions based on the encoding polynomial introduced by Tamo and Barg. The proposed construction can design a code whose minimum distance is unrealizable by the existing construction.

2401-2420hit(21534hit)