The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

2581-2600hit(21534hit)

  • Averaging Area of Incident Power Density for Human Exposure from Patch Antenna Arrays

    Daisuke FUNAHASHI  Takahiro ITO  Akimasa HIRATA  Takahiro IYAMA  Teruo ONISHI  

     
    BRIEF PAPER

      Vol:
    E101-C No:8
      Page(s):
    644-646

    This study discusses an area-averaged incident power density to estimate surface temperature elevation from patch antenna arrays with 4 and 9 elements at the frequencies above 10 GHz. We computationally demonstrate that a smaller averaging area (1 cm2) of power density should be considered at the frequency of 30 GHz or higher compared with that at lower frequencies (4 cm2).

  • Safety Technologies in Autonomous Decentralized Railway Control System and its Future Studies Open Access

    Shinichi RYOKI  Takashi KUNIFUJI  Toshihiro ITOH  

     
    INVITED PAPER

      Pubricized:
    2018/02/22
      Vol:
    E101-B No:8
      Page(s):
    1768-1774

    Along with the sophistication of society, the requirements for infrastructure systems are also becoming more sophisticated. Conventionally, infrastructure systems have been accepted if they were safe and stable, but nowadays they are required for serviceability as a matter of course. For this reason, not only the expansion of the scope of the control system but also the integration with the information service system has been frequently carried out. In this paper, we describe safety technology based on autonomous decentralized technology as one of the measures to secure safety in a control system integrating such information service functions. And we propose its future studies.

  • An Emotion Similarity Based Severity Prediction of Software Bugs: A Case Study of Open Source Projects

    Geunseok YANG  Tao ZHANG  Byungjeong LEE  

     
    PAPER-Software Engineering

      Pubricized:
    2018/05/02
      Vol:
    E101-D No:8
      Page(s):
    2015-2026

    Many software development teams usually tend to focus on maintenance activities in general. Recently, many studies on bug severity prediction have been proposed to help a bug reporter determine severity. But they do not consider the reporter's expression of emotion appearing in the bug report when they predict the bug severity level. In this paper, we propose a novel approach to severity prediction for reported bugs by using emotion similarity. First, we do not only compute an emotion-word probability vector by using smoothed unigram model (UM), but we also use the new bug report to find similar-emotion bug reports with Kullback-Leibler divergence (KL-divergence). Then, we introduce a new algorithm, Emotion Similarity (ES)-Multinomial, which modifies the original Naïve Bayes Multinomial algorithm. We train the model with emotion bug reports by using ES-Multinomial. Finally, we can predict the bug severity level in the new bug report. To compare the performance in bug severity prediction, we select related studies including Emotion Words-based Dictionary (EWD)-Multinomial, Naïve Bayes Multinomial, and another study as baseline approaches in open source projects (e.g., Eclipse, GNU, JBoss, Mozilla, and WireShark). The results show that our approach outperforms the baselines, and can reflect reporters' emotional expressions during the bug reporting.

  • Improved Radiometric Calibration by Brightness Transfer Function Based Noise & Outlier Removal and Weighted Least Square Minimization

    Chanchai TECHAWATCHARAPAIKUL  Pradit MITTRAPIYANURUK  Pakorn KAEWTRAKULPONG  Supakorn SIDDHICHAI  Werapon CHIRACHARIT  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2018/05/16
      Vol:
    E101-D No:8
      Page(s):
    2101-2114

    An improved radiometric calibration algorithm by extending the Mitsunaga and Nayar least-square minimization based algorithm with two major ideas is presented. First, a noise & outlier removal procedure based on the analysis of brightness transfer function is included for improving the algorithm's capability on handling noise and outlier in least-square estimation. Second, an alternative minimization formulation based on weighted least square is proposed to improve the weakness of least square minimization when dealing with biased distribution observations. The performance of the proposed algorithm with regards to two baseline algorithms is demonstrated, i.e. the classical least square based algorithm proposed by Mitsunaga and Nayar and the state-of-the-art rank minimization based algorithm proposed by Lee et al. From the results, the proposed algorithm outperforms both baseline algorithms on both the synthetic dataset and the dataset of real-world images.

  • Transform Electric Power Curve into Dynamometer Diagram Image Using Deep Recurrent Neural Network

    Junfeng SHI  Wenming MA  Peng SONG  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2018/05/09
      Vol:
    E101-D No:8
      Page(s):
    2154-2158

    To learn the working situation of rod-pumped wells under ground, we always need to analyze dynamometer diagrams, which are generated by the load sensor and displacement sensor. Rod-pumped wells are usually located in the places with extreme weather, and these sensors are installed on some special oil equipments in the open air. As time goes by, sensors are prone to generating unstable and incorrect data. Unfortunately, load sensors are too expensive to frequently reinstall. Therefore, the resulting dynamometer diagrams sometimes cannot make an accurate diagnosis. Instead, as an absolutely necessary equipment of the rod-pumped well, the electric motor has much longer life and cannot be easily impacted by the weather. The electric power curve during a swabbing period can also reflect the working situation under ground, but is much harder to explain than the dynamometer diagram. This letter presented a novel deep learning architecture, which can transform the electric power curve into the dimensionless dynamometer diagram image. We conduct our experiments on a real-world dataset, and the results show that our method can get an impressive transformation accuracy.

  • A Design for Testability of Open Defects at Interconnects in 3D Stacked ICs

    Fara ASHIKIN  Masaki HASHIZUME  Hiroyuki YOTSUYANAGI  Shyue-Kung LU  Zvi ROTH  

     
    PAPER-Dependable Computing

      Pubricized:
    2018/05/09
      Vol:
    E101-D No:8
      Page(s):
    2053-2063

    A design-for-testability method and an electrical interconnect test method are proposed to detect open defects occurring at interconnects among dies and input/output pins in 3D stacked ICs. As part of the design method, an nMOS and a diode are added to each input interconnect. The test method is based on measuring the quiescent current that is made to flow through an interconnect to be tested. The testability is examined both by SPICE simulation and by experimentation. The test method enabled the detection of open defects occurring at the newly designed interconnects of dies at experiments test speed of 1MHz. The simulation results reveal that an open defect generating additional delay of 279psec is detectable by the test method at a test speed of 200MHz beside of open defects that generate no logical errors.

  • An Efficient Misalignment Method for Visual Tracking Based on Sparse Representation

    Shan JIANG  Cheng HAN  Xiaoqiang DI  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2018/05/14
      Vol:
    E101-D No:8
      Page(s):
    2123-2131

    Sparse representation has been widely applied to visual tracking for several years. In the sparse representation framework, tracking problem is transferred into solving an L1 minimization issue. However, during the tracking procedure, the appearance of target was affected by external environment. Therefore, we proposed a robust tracking algorithm based on the traditional sparse representation jointly particle filter framework. First, we obtained the observation image set from particle filter. Furthermore, we introduced a 2D transformation on the observation image set, which enables the tracking target candidates set more robust to handle misalignment problem in complex scene. Moreover, we adopt the occlusion detection mechanism before template updating, reducing the drift problem effectively. Experimental evaluations on five public challenging sequences, which exhibit occlusions, illuminating variations, scale changes, motion blur, and our tracker demonstrate accuracy and robustness in comparisons with the state-of-the-arts.

  • Proof and Evaluation of Improved Slack Reclamation for Response Time Analysis of Real-Time Multiprocessor Systems

    Hyeongboo BAEK  Donghyouk LIM  Jinkyu LEE  

     
    LETTER-Software System

      Pubricized:
    2018/05/02
      Vol:
    E101-D No:8
      Page(s):
    2136-2140

    RTA (Response time analysis) is a popular technique to guarantee timing requirements for a real-time system, and therefore the RTA framework has been widely studied for popular scheduling algorithms such as EDF (Earliest Deadline First) and FP (Fixed Priority). While a number of extended techniques of RTA have been introduced, some of them cannot be used since they have not been proved and evaluated in terms of their correctness and empirical performance. In this letter, we address the state of the art technique of slack reclamation of the existing generic RTA framework for multiprocessors. We present its mathematical proof of correctness and empirical performance evaluation, which have not been revealed to this day.

  • Performance Analysis of IEEE 802.11 DCF Based on a Macroscopic State Description

    Xiang LI  Yuki NARITA  Yuta GOTOH  Shigeo SHIODA  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2018/01/22
      Vol:
    E101-B No:8
      Page(s):
    1923-1932

    We propose an analytical model for IEEE 802.11 wireless local area networks (WLANs). The analytical model uses macroscopic descriptions of the distributed coordination function (DCF): the backoff process is described by a few macroscopic states (medium-idle, transmission, and medium-busy), which obviates the need to track the specific backoff counter/backoff stages. We further assume that the transitions between the macroscopic states can be characterized as a continuous-time Markov chain under the assumption that state persistent times are exponentially distributed. This macroscopic description of DCF allows us to utilize a two-dimensional continuous-time Markov chain for simplifying DCF performance analysis and queueing processes. By comparison with simulation results, we show that the proposed model accurately estimates the throughput performance and average queue length under light, heavy, or asymmetric traffic.

  • Attribute-Based Keyword Search with Proxy Re-Encryption in the Cloud

    Yanli CHEN  Yuanyuan HU  Minhui ZHU  Geng YANG  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2018/02/16
      Vol:
    E101-B No:8
      Page(s):
    1798-1808

    This work is conducted to solve the current problem in the attribute-based keyword search (ABKS) scheme about how to securely and efficiently delegate the search rights to other users when the authorized user is not online. We first combine proxy re-encryption (PRE) with the ABKS technology and propose a scheme called attribute-based keyword search with proxy re-encryption (PABKS). The scheme not only realizes the functions of data search and fine-grained access control, but also supports search function sharing. In addition, we randomly blind the user's private key to the server, which ensures the confidentiality and security of the private key. Then, we also prove that the scheme is selective access structure and chosen keyword attack (IND-sAS-CKA) secured in the random oracle model. A performance analysis and security proof show that the proposed scheme can achieve efficient and secure data search in the cloud.

  • Facilitating Dynamic RT-QoS for Massive-Scale Autonomous Cyber-Physical Systems Open Access

    David W. McKEE  Xue OUYANG  Jie XU  

     
    INVITED PAPER

      Pubricized:
    2018/02/22
      Vol:
    E101-B No:8
      Page(s):
    1760-1767

    With the evolution of autonomous distributed systems such as smart cities, autonomous vehicles, smart control and scheduling systems there is an increased need for approaches to manage the execution of services to deliver real-time performance. As Cloud-hosted services are increasingly used to provide intelligence and analytic functionality to Internet of Things (IoT) systems, Quality of Service (QoS) techniques must be used to guarantee the timely service delivery. This paper reviews state-of-the-art QoS and Cloud techniques for real-time service delivery and data analysis. A review of straggler mitigation and a classification of real-time QoS techniques is provided. Then a mathematical framework is presented capturing the relationship between the host execution environment and the executing service allowing the response-times to predicted throughout execution. The framework is shown experimentally to reduce the number of QoS violations by 21% and provides alerts during the first 14ms provide alerts for 94% of future violations.

  • Detecting Unsafe Raw Pointer Dereferencing Behavior in Rust

    Zhijian HUANG  Yong Jun WANG  Jing LIU  

     
    LETTER-Dependable Computing

      Pubricized:
    2018/05/14
      Vol:
    E101-D No:8
      Page(s):
    2150-2153

    The rising systems programming language Rust is fast, efficient and memory safe. However, improperly dereferencing raw pointers in Rust causes new safety problems. In this paper, we present a detailed analysis into these problems and propose a practical hybrid approach to detecting unsafe raw pointer dereferencing behaviors. Our approach employs pattern matching to identify functions that can be used to generate illegal multiple mutable references (We define them as thief function) and instruments the dereferencing operation in order to perform dynamic checking at runtime. We implement a tool named UnsafeFencer and has successfully identified 52 thief functions in 28 real-world crates*, of which 13 public functions are verified to generate multiple mutable references.

  • Study on Single-Polarized Holey Fibers with Double-Hole Unit Cores for Cross-Talk Free Polarization Splitter

    Zejun ZHANG  Yasuhide TSUJI  Masashi EGUCHI  Chun-ping CHEN  

     
    PAPER

      Vol:
    E101-C No:8
      Page(s):
    620-626

    A single-polarization single-mode (SPSM) photonic crystal fiber (PCF) based on double-hole unit core is proposed in this paper for application to cross-talk free polarization splitter (PS). Birefringence of the PCF is obtained by adopting double-hole unit cells into the core to destroy its symmetry. With an appropriate cladding hole size, single x- or y-polarized PCF can be achieved by arranging the double-hole unit in the core along the x- or y-axis, respectively. Moreover, our proposed SPSM PCF has the potential to be applied to consist a cross-talk free PS. The simulation result by employing a vectorial finite element beam propagation method (FE-BPM) demonstrates that an arbitrary polarized incident light can be completely separated into two orthogonal single-polarized components through the PS. The structural tolerance and wavelength dependence of the PS have also been discussed in detail.

  • Improving Range Resolution by Triangular Decomposition for Small UAV Radar Altimeters

    Di BAI  Zhenghai WANG  Mao TIAN  Xiaoli CHEN  

     
    PAPER-Sensing

      Pubricized:
    2018/02/20
      Vol:
    E101-B No:8
      Page(s):
    1933-1939

    A triangular decomposition-based multipath super-resolution method is proposed to improve the range resolution of small unmanned aerial vehicle (UAV) radar altimeters that use a single channel with continuous direct spread waveform. In the engineering applications of small UAV radar altimeter, multipath scenarios are quite common. When the conventional matched filtering process is used under these environments, it is difficult to identify multiple targets in the same range cell due to the overlap between echoes. To improve the performance, we decompose the overlapped peaks yielded by matched filtering into a series of basic triangular waveforms to identify various targets with different time-shifted correlations of the pseudo-noise (PN) sequence. Shifting the time scale enables targets in the same range resolution unit to be identified. Both theoretical analysis and experiments show that the range resolution can be improved significantly, as it outperforms traditional matched filtering processes.

  • Application of Novel Metallic PhC Resonators in Theoretical Design of THz BPFs

    Chun-Ping CHEN  Kazuki KANAZAWA  Zejun ZHANG  Tetsuo ANADA  

     
    BRIEF PAPER

      Vol:
    E101-C No:8
      Page(s):
    655-659

    This paper presents a theoretical design of novel THz bandpass filters composed of M-PhC (metallic-photonic-crystal) point-defect-cavities (PDCs) with a centrally-loaded-rod. After a brief review of the properties of the recently-proposed M-PhC PDCs, two inline-type bandpass filters are synthesized in terms of the coupling matrix theory. The FDTD simulation results of the synthesized filters are in good agreement with the theoretical ones, which confirms the validity of the proposed filters' structures and the design scheme.

  • A Study on Dependency of Transmission Loss of Shielded-Flexible Printed Circuits for Differential Signaling

    Yoshiki KAYANO  Hiroshi INOUE  

     
    BRIEF PAPER

      Vol:
    E101-C No:8
      Page(s):
    660-663

    In this paper, dependency of transmission loss of shielded-flexible printed circuits (FPC) for differential-signaling on thickness of conductive shield is studied by numerical modeling based on an equivalent circuit model compared with the experimental results. Especially, the transmission loss due to the thin conductive shield is focused. The insufficient shielding performance for near magnetic field decreases the resistance due to the thin conductive shield. It is shown that the resistance due to the thin conductive shield at lower frequencies is smaller than that in the “thick conductive shield” case.

  • Multiport Signal-Flow Analysis to Improve Signal Quality of Time-Interleaved Digital-to-Analog Converters

    Youngcheol PARK  

     
    PAPER-Electronic Instrumentation and Control

      Vol:
    E101-C No:8
      Page(s):
    685-689

    This letter describes a method that characterizes and improves the performance of a time-interleaved (TI) digital-to-analog converter (DAC) system by using multiport signal-flow graphs at microwave frequencies. A commercial signal generator with two TI DACs was characterized through s-parameter measurements and was compared to the conventional method. Moreover, prefilters were applied to correct the response, resulting in an error-vector magnitude improvement of greater than 8 dB for a 64-quadrature-amplitude-modulated signal of 4.8 Gbps. As a result, the bandwidth limitation and the complex post processing of the conventional method could be minimized.

  • Specificity-Aware Ontology Generation for Improving Web Service Clustering

    Rupasingha A. H. M. RUPASINGHA  Incheon PAIK  Banage T. G. S. KUMARA  

     
    PAPER-Data Engineering, Web Information Systems

      Pubricized:
    2018/05/18
      Vol:
    E101-D No:8
      Page(s):
    2035-2043

    With the expansion of the Internet, the number of available Web services has increased. Web service clustering to identify functionally similar clusters has become a major approach to the efficient discovery of suitable Web services. In this study, we propose a Web service clustering approach that uses novel ontology learning and a similarity calculation method based on the specificity of an ontology in a domain with respect to information theory. Instead of using traditional methods, we generate the ontology using a novel method that considers the specificity and similarity of terms. The specificity of a term describes the amount of domain-specific information contained in that term. Although general terms contain little domain-specific information, specific terms may contain much more domain-related information. The generated ontology is used in the similarity calculations. New logic-based filters are introduced for the similarity-calculation procedure. If similarity calculations using the specified filters fail, then information-retrieval-based methods are applied to the similarity calculations. Finally, an agglomerative clustering algorithm, based on the calculated similarity values, is used for the clustering. We achieved highly efficient and accurate results with this clustering approach, as measured by improved average precision, recall, F-measure, purity and entropy values. According to the results, specificity of terms plays a major role when classifying domain information. Our novel ontology-based clustering approach outperforms comparable existing approaches that do not consider the specificity of terms.

  • A Scalable SDN Architecture for Underwater Networks Security Authentication

    Qiuli CHEN  Ming HE  Xiang ZHENG  Fei DAI  Yuntian FENG  

     
    PAPER-Information Network

      Pubricized:
    2018/05/16
      Vol:
    E101-D No:8
      Page(s):
    2044-2052

    Software-defined networking (SDN) is recognized as the next-generation networking paradigm. The software-defined architecture for underwater acoustic sensor networks (SDUASNs) has become a hot topic. However, the current researches on SDUASNs is still in its infancy, which mainly focuses on network architecture, data transmission and routing. There exists some shortcomings that the scale of the SDUASNs is difficult to expand, and the security maintenance is seldom dabble. Therefore, a scalable software-definition architecture for underwater acoustic sensor networks (SSDUASNs) is introduced in this paper. It realizes an organic combination of the knowledge level, control level, and data level. The new nodes can easily access the network, which could be conducive to large-scale deployment. Then, the basic security authentication mechanism called BSAM is designed based on our architecture. In order to reflect the advantages of flexible and programmable in SSDUASNs, security authentication mechanism with pre-push (SAM-PP) is proposed in the further. In the current UASNs, nodes authentication protocol is inefficient as high consumption and long delay. In addition, it is difficult to adapt to the dynamic environment. The two mechanisms can effectively solve these problems. Compared to some existing schemes, BSAM and SAM-PP can effectively distinguish between legal nodes and malicious nodes, save the storage space of nodes greatly, and improve the efficiency of network operation. Moreover, SAM-PP has a further advantage in reducing the authentication delay.

  • Understanding Support of Causal Relationship between Events in Historical Learning

    Tomoko KOJIRI  Fumito NATE  Keitaro TOKUTAKE  

     
    PAPER-Educational Technology

      Pubricized:
    2018/05/14
      Vol:
    E101-D No:8
      Page(s):
    2072-2081

    In historical learning, to grasp the causal relationship between historical events and to understand factors that bring about important events are significant for fostering the historical thinking. However, some students are not able to find historical events that have causal relationships. The view of observing the historical events is different among individuals, so it is not appropriate to define the historical events that have causal relationships and impose students to remember them. The students need to understand the definition of the causal relationships and find the historical events that satisfy the definition according to their viewpoints. The objective of this paper is to develop a support system for understanding the meaning of a causal relationship and creating causal relation graphs that represent the causal relationships between historical events. When historical events have a causal relationship, a state change caused by one event becomes the cause of the other event. To consider these state changes is critically important to connect historical events. This paper proposes steps for considering causal relationships between historical events by arranging the state changes of historical people along with them. It also develops the system that supports students to create the causal relation graph according to the state changes. In our system, firstly, the interface for arranging state changes of historical people according to the historical events is given. Then, the interface for drawing the causal relation graph of historical events is provided in which state changes are automatically indicated on the created links in the causal relation graph. By observing the indicated state changes on the links, students are able to check by themselves whether their causal relation graphs correctly represent the causal relationships between historical events.

2581-2600hit(21534hit)