The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

2601-2620hit(21534hit)

  • Data Hiding in Spatial Color Images on Smartphones by Adaptive R-G-B LSB Replacement

    Haeyoung LEE  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2018/04/25
      Vol:
    E101-D No:8
      Page(s):
    2163-2167

    This paper presents an adaptive least-significant-bit (LSB) steganography for spatial color images on smartphones. For each red, green, and blue color component, the combinations of All-4bit, One-4bit+Two-2bit, and Two-3bit+One-2bit LSB replacements are proposed for content-adaptivity and natural histograms. The high capacity of 8.4bpp with the average peak signal noise ratio (PSNR) 43.7db and fast processing times on smartphones are also demonstrated

  • Reachability Analysis of Multi-Hop D2D Communications at Disaster

    Noriaki KAMIYAMA  Keisuke ISHIBASHI  Yoko HOSHIAI  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2018/02/20
      Vol:
    E101-B No:8
      Page(s):
    1833-1844

    During a disaster, users will not be able to communicate with their families and friends using mobile terminals, e.g., smartphones, in many cases due to failures of base stations and backhaul of cellular networks. Even when cellular networks normally operate without failure, they will become seriously congested due to dramatically increased traffic demand. To solve these problems, device-to-device (D2D) communications, in which mobile terminals directly communicate without cellular networks, have been investigated. Multi-hop D2D communication using multiple mobile terminals as relay nodes will be effective in maintaining connectivity during a disaster. It is preferable to estimate the success probability of multi-hop D2D communication by using a simple method that offers optimal parameter control, e.g., the ratio of mobile terminals using D2D communications and the maximum hop length. Moreover, when evaluating the reachability of multi-hop D2D communication, we need to consider the evacuation behavior during a disaster because success probability depends on the geographical distribution of mobile terminals. Therefore, in this paper, we derive a formula for estimating the success probability of multi-hop D2D communication in a simple manner and analyze its reachability using a multi-agent simulation that reproduces the evacuation behavior expected during an earthquake in Tokyo Shinjuku Ward.

  • Autonomous Decentralised Systems and Global Social Systems Open Access

    Colin G. HARRISON  

     
    INVITED PAPER

      Pubricized:
    2018/02/22
      Vol:
    E101-B No:8
      Page(s):
    1753-1759

    As the capabilities and costs of Artificial Intelligence (AI) and of sensors (IoT) continue to improve, the concept of a “control system” can evolve beyond the operation of a discrete technical system based on numerical information and enter the realm of large-scale systems with both technical and social characteristics based on both numerical and unstructured information. This evolution has particular significance for applying the principles of Autonomous Decentralised Systems (ADS) [1]. This article considers the possible roles for ADS in complex technical and social systems extending up to global scales.

  • Decentralized Event-Triggered Control of Composite Systems Using M-Matrices

    Kenichi FUKUDA  Toshimitsu USHIO  

     
    PAPER-Systems and Control

      Vol:
    E101-A No:8
      Page(s):
    1156-1161

    A composite system consists of many subsystems, which have interconnections with other subsystems. For such a system, in general, we utilize decentralized control, where each subsystem is controlled by a local controller. On the other hand, event-triggered control is one of useful approaches to reduce the amount of communications between a controller and a plant. In the event-triggered control, an event triggering mechanism (ETM) monitors the information of the plant, and determines the time to transmit the data. In this paper, we propose a design of ETMs for the decentralized event-triggered control of nonlinear composite systems using an M-matrix. We consider the composite system where there is an ETM for each subsystem, and ETMs monitor local states of the corresponding subsystems. Each ETM is designed so that the composite system is stabilized. Moreover, we deal with the case of linear systems. Finally, we perform simulation to show that the proposed triggering rules are useful for decentralized control.

  • Autonomous, Decentralized and Privacy-Enabled Data Preparation for Evidence-Based Medicine with Brain Aneurysm as a Phenotype

    Khalid Mahmood MALIK  Hisham KANAAN  Vian SABEEH  Ghaus MALIK  

     
    PAPER

      Pubricized:
    2018/02/22
      Vol:
    E101-B No:8
      Page(s):
    1787-1797

    To enable the vision of precision medicine, evidence-based medicine is the key element. Understanding the natural history of complex diseases like brain aneurysm and particularly investigating the evidences of its rupture risk factors relies on the existence of semantic-enabled data preparation technology to conduct clinical trials, survival analysis and outcome prediction. For personalized medicine in the field of neurological diseases, it is very important that multiple health organizations coordinate and cooperate to conduct evidence based observational studies. Without the means of automating the process of privacy and semantic-enabled data preparation to conduct observational studies at intra-organizational level would require months to manually prepare the data. Therefore, this paper proposes a semantic and privacy enabled, multi-party data preparation architecture and a four-tiered semantic similarity algorithm. Evaluation shows that proposed algorithm achieves a precision of 79%, high recall at 83% and F-measure of 81%.

  • Frequency-Dependent LOD-FDTD Method in Cylindrical Coordinates

    Jun SHIBAYAMA  Tatsuyuki HARA  Masato ITO  Junji YAMAUCHI  Hisamatsu NAKANO  

     
    BRIEF PAPER

      Vol:
    E101-C No:8
      Page(s):
    637-639

    The locally one-dimensional finite-difference time-domain (FDTD) method in cylindrical coordinates is extended to a frequency-dependent version. The fundamental scheme is utilized to perform matrix-operator-free formulations in the right-hand sides. For the analysis of surface plasmon polaritons propagating along a plasmonic grating, the computation time is significantly reduced to less than 10%, compared with the explicit cylindrical FDTD method.

  • Tighter Generalization Bounds for Matrix Completion Via Factorization Into Constrained Matrices

    Ken-ichiro MORIDOMI  Kohei HATANO  Eiji TAKIMOTO  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2018/05/18
      Vol:
    E101-D No:8
      Page(s):
    1997-2004

    We prove generalization error bounds of classes of low-rank matrices with some norm constraints for collaborative filtering tasks. Our bounds are tighter, compared to known bounds using rank or the related quantity only, by taking the additional L1 and L∞ constraints into account. Also, we show that our bounds on the Rademacher complexity of the classes are optimal.

  • Pseudonym and Key Management Scheme for Supporting Social Smart Applications

    Yusuke FUKUSHIMA  Ved P. KAFLE  Hiroaki HARAI  

     
    PAPER

      Pubricized:
    2018/02/22
      Vol:
    E101-B No:8
      Page(s):
    1775-1786

    Both placing responsibility of message sending on every IoT object and obfuscating the object's location from other objects are essential to realize a secure and privacy-preserved communication service. Two or more short-lived link identifiers (or pseudonyms) authorized by a trustable authority are often used in related studies, instead of a persistent or long-term use link identifier (i.e. vendor assigned MAC address). However, related studies have limitations in terms of frequently changing pseudonyms to enhance location privacy because the cryptographic algorithms used in them fixedly couple object's identifiers with its security keys. To overcome those limitations, we present a new pseudonym and key management scheme that enables dynamic coupling of pseudonym and key pairs without incurring any adverse impacts. Furthermore, we propose two lightweight pseudonym allocation protocols to effectively reduce the volume of message carrying the allocation parameters. Through qualitative analyses, we verify that the proposed scheme is more scalable than related approaches as it can efficiently allocate enough number of pseudonym/key pairs by reducing the control message overhead by more than 90%.

  • ZINK: An Efficient Information Centric Networking Utilizing Layered Network Architecture

    Takao KONDO  Shuto YOSHIHARA  Kunitake KANEKO  Fumio TERAOKA  

     
    PAPER-Network

      Pubricized:
    2018/02/16
      Vol:
    E101-B No:8
      Page(s):
    1853-1865

    This paper argues that a layered approach is more suitable for Information Centric Networking (ICN) than a narrow-waist approach and proposes an ICN mechanism called ZINK. In ZINK, a location-independent content name is resolved to a list of node IDs of content servers in the application layer and a node ID is mapped to a node locator in the network layer, which results in scalable locator-based routing. An ID/Locator split approach in the network layer can efficiently support client/serever mobility. Efficient content transfer is achieved by using sophisticated functions in the transport layer such as multipath transfer for bandwidth aggregation or fault tolerance. Existing well-tuned congestion control in the transport layer achieves fairness not only among ICN flows but also among ICN flows and other flows. A proof-of concept prototype of ZINK is implemented on an IPv6 stack. Evaluation results show that the time for content finding is practical, efficient content transfer is possible by using multipath transfer, and the mobility support mechanism is scalable as shown in a nationwide experiment environment in Japan.

  • Convergence Properties of Iterative Full-Wave Electromagnetic FEM Analyses with Node Block Preconditioners

    Toshio MURAYAMA  Akira MUTO  Amane TAKEI  

     
    PAPER

      Vol:
    E101-C No:8
      Page(s):
    612-619

    In this paper we report the convergence acceleration effect of the extended node patch preconditioner for the iterative full-wave electromagnetic finite element method with more than ten million degrees of freedom. The preconditioner, which is categorized into the multiplicative Schwarz scheme, effectively works with conventional numerical iterative matrix solving methods on a parallel computer. We examined the convergence properties of the preconditioner combined with the COCG, COCR and GMRES algorithms for the analysis domain encompassed by absorbing boundary conditions (ABC) such as perfectly matched layers (PML). In those analyses the properties of the convergence are investigated numerically by sweeping frequency range and the number of PMLs. Memory-efficient nature of the preconditioner is numerically confirmed through the experiments and upper bounds of the required memory size are theoretically proved. Finally it is demonstrated that this extended node patch preconditioner with GMRES algorithm works well with the problems up to one hundred million degrees of freedom.

  • A Reactive Management System for Reliable Power Supply in a Building Microgrid with Vehicle-to-Grid Interaction

    Shoko KIMURA  Yoshihiko SUSUKI  Atsushi ISHIGAME  

     
    PAPER-Systems and Control

      Vol:
    E101-A No:8
      Page(s):
    1172-1184

    We address a BEMS (Building Energy Management System) to guarantee reliability of electric-power supply in dynamic uncertain environments. The building microgrid as the target of BEMS has multiple distributed power sources including a photo-voltaic power system and Electric-Vehicle (EV). EV is regarded as an autonomously-moving battery due to the original means of transportation and is hence a cause of dynamic uncertainty of the building microgrid. The main objective of synthesis of BEMS in this paper is to guarantee the continuous supply of power to the most critical load in a building microgrid and to realize the power supply to the other loads according to a ranking of load importance. We synthesize the BEMS as a reactive control system that monitors changes of dynamic uncertain environment of the microgrid including departure and arrival of an EV, and determines a route of power supply to the most critical load. Also, we conduct numerical experiments of the reactive BEMS using models of power flows in the building and of charging states of the batteries. The experiments are incorporated with data measured in a practical office building and demonstration project of EMS at Osaka, Japan. We show that the BEMS works for extending the time duration of continuous power supply to the most critical load.

  • An Energy-Efficient Mobile Group Clustering Protocol for Wireless Sensor Networks

    Mochammad Zen Samsono HADI  Yuichi MIYAJI  Hideyuki UEHARA  

     
    PAPER-Network

      Pubricized:
    2018/02/19
      Vol:
    E101-B No:8
      Page(s):
    1866-1875

    In this paper, we present an Energy-efficient Mobile Group Clustering (EMGC) protocol that supports group mobility and a group handover scheme. The mobile sensor nodes are divided into three categories, namely cluster heads, group leaders and group members. In our cluster formation and group handover scheme, group leaders and cluster heads do most of the communications to save on energy consumption during which group members are placed in the sleep condition. This scheme will reduce the number of control packets and frequent topology changes in the networks. Simulation results show that the EMGC protocol outperforms MN-LEACH, GMAC, MBC protocols in terms of energy dissipation and the number of data items received at a base station.

  • An On-The-Fly Jitter Suppression Technique for Plain-CMOS-Logic-Based Timing Verniers: Dynamic Power Compensation with the Extensions of Digitally Variable Delay Lines

    Nobutaro SHIBATA  Mitsuo NAKAMURA  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E101-A No:8
      Page(s):
    1185-1196

    Timing vernier (i.e., digital-to-time converter) is a key component of the pin-electronics circuit board installed in automated digital-VLSI test equipment, and it is used to create fine delays of less than one-cycle time of a clock signal. This paper presents a new on-the-fly (timing-) jitter suppression technique which makes it possible to use low-power plain-CMOS-logic-based timing verniers. Using a power-compensation line installed at the poststage of the digitally variable delay line, we make every pulse (used as a timing signal) consume a fixed amount of electric energy independent of the required delay amount. Since the power load of intrapowerlines is kept constantly, the jitter increase in the situation of changing the required delay amount on the fly is suppressed. On the basis of the concept, a 10-ns span, 125-MHz timing-vernier macro was designed and fabricated with a CMOS process for logic VLSIs. Every macro installed in a real-time timing-signal generator VLSI achieved the required timing resolution of 31.25ps with a linearity error within 15ps. The on-the-fly jitter was successfully suppressed to a random jitter level (<26ps p-p).

  • Efficient Transceiver Design for Large-Scale SWIPT System with Time-Switching and Power-Splitting Receivers

    Pham-Viet TUAN  Insoo KOO  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2018/01/12
      Vol:
    E101-B No:7
      Page(s):
    1744-1751

    The combination of large-scale antenna arrays and simultaneous wireless information and power transfer (SWIPT), which can provide enormous increase of throughput and energy efficiency is a promising key in next generation wireless system (5G). This paper investigates efficient transceiver design to minimize transmit power, subject to users' required data rates and energy harvesting, in large-scale SWIPT system where the base station utilizes a very large number of antennas for transmitting both data and energy to multiple users equipped with time-switching (TS) or power-splitting (PS) receive structures. We first propose the well-known semidefinite relaxation (SDR) and Gaussian randomization techniques to solve the minimum transmit power problems. However, for these large-scale SWIPT problems, the proposed scheme, which is based on conventional SDR method, is not suitable due to its excessive computation costs, and a consensus alternating direction method of multipliers (ADMM) cannot be directly applied to the case that TS or PS ratios are involved in the optimization problem. Therefore, in the second solution, our first step is to optimize the variables of TS or PS ratios, and to achieve simplified problems. After then, we propose fast algorithms for solving these problems, where the outer loop of sequential parametric convex approximation (SPCA) is combined with the inner loop of ADMM. Numerical simulations show the fast convergence and superiority of the proposed solutions.

  • Phase Sensitive Amplifier Using Periodically Poled LiNbO3 Waveguides and Their Applications Open Access

    Masaki ASOBE  Takeshi UMEKI  Osamu TADANAGA  

     
    INVITED PAPER

      Vol:
    E101-C No:7
      Page(s):
    586-593

    Recent advances in phase-sensitive amplifiers (PSAs) using periodically poled LiNbO3 are reviewed. Their principles of operation and distinct features are described. Applications in optical communication are studied in terms of the inline operation and amplification of a sophisticated modulation format. Challenges for the future are also discussed.

  • A Low-Complexity Signal Detection Approach in Uplink Massive MIMO Systems

    Zhuojun LIANG  Chunhui DING  Guanghui HE  

     
    LETTER-Digital Signal Processing

      Vol:
    E101-A No:7
      Page(s):
    1115-1119

    A low-complexity signal detection approach based on the Kaczmarz algorithm (KA) is proposed to iteratively realize minimum mean square error (MMSE) detection for uplink massive multiple-input multiple-output (MIMO) systems. While KA is used for straightforward matrix inversion, the MMSE detection requires the computation of the Gram matrix with high complexity. In order to avoid the Gram matrix computation, an equivalent augmented matrix is applied to KA-based MMSE detection. Moreover, promising initial estimation and an approximate method to compute soft-output information are utilized to further accelerate the convergence rate and reduce the complexity. Simulation results demonstrate that the proposed approach outperforms the recently proposed Neumann series, conjugate gradient, and Gauss-Seidel methods in complexity and error-rate performance. Meanwhile, the FPGA implementation results confirm that our proposed method can efficiently compute the approximate inverse with low complexity.

  • Novel Access Control Scheme with Collision Detection Utilizing MIMO Transmission Procedure in WLAN Systems

    Takefumi HIRAGURI  Kentaro NISHIMORI  Yoshiaki MORINO  Mamoru UGAJIN  Hideaki YOSHINO  

     
    PAPER

      Pubricized:
    2018/01/22
      Vol:
    E101-B No:7
      Page(s):
    1561-1574

    This paper proposes a novel access control scheme with collision detection that utilizes multiple-input multiple-output (MIMO) technology. Carrier sense multiple access with collision detection (CSMA/CD) is used in Ethernet wired local area networks (LANs) for media access control (MAC). CSMA/CD can immediately abort a transmission if any collision is detected and is thus able to change to a retransmission state. In Ethernet, CSMA/CD results in a transmission efficiency of approximately 90% because the protocol makes the transmission band available for useful communication by this retransmission function. Conversely, in conventional wireless LANs (WLANs), the packet collisions due to interfering signals and the retransmission due to collisions are significant issues. Because conventional WLANs cannot detect packet collisions during signal transmission, the success of a transmission can only be determined by whether an acknowledgment (ACK) frame has been received. Consequently, the transmission efficiency is low — approximately 60%. The objective of our study is to increase the transmission efficiency of WLANs to make it at least equal to that of Ethernet. Thus, we propose a novel access control scheme with collision detection that utilizes MIMO technology. When preamble signals are transmitted before transmitting data packets from an antenna, the proposed scheme can detect packet collisions during signal transmission at another antenna; then, the affected packets are retransmitted immediately. Two fundamental technologies are utilized to realize our proposed scheme. The first technology is the access control protocol in the MAC layer in the form of the MIMO frame sequence protocol, which is used to detect signal interference. The other technology is signal processing in the physical (PHY) layer that actualizes collision detection. This paper primarily deals with the proposed MAC layer scheme, which is evaluated by theoretical analyses and computer simulations. Evaluation by computer simulations indicate that the proposed scheme in a transmission efficiency of over 90%.

  • Heteroepitaxial Growth of GaAs/Ge Buffer Layer on Si for Metamorphic InGaAs Lasers Open Access

    Ryo NAKAO  Masakazu ARAI  Takaaki KAKITSUKA  Shinji MATSUO  

     
    INVITED PAPER

      Vol:
    E101-C No:7
      Page(s):
    537-544

    We demonstrate heteroepitaxial growth of GaAs/Ge buffer layers for fabricating 1.3-µm range metamorphic InGaAs-based multiple quantum well (MQW) lasers in which the Ge buffer layer is grown using a metal-organic Ge precursor, iso-butyl germane, in a conventional metal-organic vapor phase epitaxy reactor. This enables us to grow Ge and GaAs buffer layers in the same reactor seamlessly. Transmission electron microscopy and X-ray diffraction analyses indicate that dislocations are well confined at the Ge/Si interface. Furthermore, thermal-cycle annealing significantly improves crystalline quality at the GaAs/Ge interface, resulting in higher photoluminescence intensity from the MQWs on the buffer layers.

  • Energy-Efficient Mobile Video Delivery Utilizing Moving Route Navigation and Video Playout Buffer Control

    Kenji KANAI  Sakiko TAKENAKA  Jiro KATTO  Tutomu MURASE  

     
    PAPER

      Pubricized:
    2018/01/22
      Vol:
    E101-B No:7
      Page(s):
    1635-1644

    Because mobile users demand a high quality and energy-friendly video delivery service that efficiently uses wireless resources, we introduce an energy-efficient video delivery system by applying moving route navigation and playout buffer control based on the mobile throughput history data. The proposed system first determines the optimal travel route to achieve high-speed and energy-efficient communications. Then when a user enters a high throughput area, our system temporarily extends the video playout buffer size, and the user aggressively downloads video segments via a high-speed and energy-efficient wireless connection until the extended buffer is filled. After leaving this area, the user consumes video segments from the extended buffer in order to keep smooth video playback without wireless communications. We carry out computer simulations, laboratory and field experiments and confirm that the proposed system can achieve energy-efficient mobile video delivery.

  • Multimodal Interference in Perfluorinated Polymer Optical Fibers: Application to Ultrasensitive Strain and Temperature Sensing Open Access

    Yosuke MIZUNO  Goki NUMATA  Tomohito KAWA  Heeyoung LEE  Neisei HAYASHI  Kentaro NAKAMURA  

     
    INVITED PAPER

      Vol:
    E101-C No:7
      Page(s):
    602-610

    We review the recent advances on strain and temperature sensing techniques based on multimodal interference in perfluorinated (PF) graded-index (GI) polymer optical fibers (POFs). First, we investigate their fundamental characteristics at 1300nm. When the core diameter is 62.5µm, we obtain strain and temperature sensitivities of -112pm/µε and +49.8nm/°C, the absolute values of which are, by simple calculation, approximately 13 and over 1800 times as large as those in silica GI multimode fibers, respectively. These ultra-high strain and temperature sensitivities probably originate from the unique PF polymer used as core material. Subsequently, we show that the temperature sensitivity (absolute value) is significantly enhanced with increasing temperature toward ∼70°C, which is close to the glass-transition temperature of the core polymer. When the core diameter is 62.5µm, the sensitivity at 72°C at 1300nm is 202nm/°C, which is approximately 26 times the value obtained at room temperature and >7000 times the highest value previously reported using a silica multimode fiber. Then, we develop a single-end-access configuration of this strain and temperature sensing system, which enhances the degree of freedom in embedding the sensors into structures. The light Fresnel-reflected at the distal open end of the POF is exploited. The obtained strain and temperature sensitivities are shown to be comparable to those in two-end-access configurations. Finally, we discuss the future prospects and give concluding remarks.

2601-2620hit(21534hit)