The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

2721-2740hit(21534hit)

  • Energy/Space-Efficient Rapid Single-Flux-Quantum Circuits by Using π-Shifted Josephson Junctions

    Tomohiro KAMIYA  Masamitsu TANAKA  Kyosuke SANO  Akira FUJIMAKI  

     
    PAPER

      Vol:
    E101-C No:5
      Page(s):
    385-390

    We present a concept of an advanced rapid single-flux-quantum (RSFQ) logic circuit family using the combination of 0-shifted and π-shifted Josephson junctions. A π-shift in the current-phase relationship can be obtained in several types of Josephson junctions, such as Josephson junctions containing a ferromagnet barrier layer, depending on its thickness and temperature. We use a superconducting quantum interference devices composed of a pair of 0- and π-shifted Josephson junctions (0-π SQUIDs) as a basic circuit element. Unlike the conventional RSFQ logic, bistability is obtained by spontaneous circular currents without using a large superconductor loop, and the state can be flipped by smaller driving currents. These features lead to energy- and/or space-efficient logic gates. In this paper, we show several example circuits where we represent signals by flips of the states of a 0-π SQUID. We obtained successful operation of the circuits from numerical simulation.

  • Robust MIMO Radar Waveform Design to Improve the Worst-Case Detection Performance of STAP

    Hongyan WANG  Quan CHENG  Bingnan PEI  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2017/11/20
      Vol:
    E101-B No:5
      Page(s):
    1175-1182

    The issue of robust multi-input multi-output (MIMO) radar waveform design is investigated in the presence of imperfect clutter prior knowledge to improve the worst-case detection performance of space-time adaptive processing (STAP). Robust design is needed because waveform design is often sensitive to uncertainties in the initial parameter estimates. Following the min-max approach, a robust waveform covariance matrix (WCM) design is formulated in this work with the criterion of maximization of the worst-case output signal-interference-noise-ratio (SINR) under the constraint of the initial parameter estimation errors to ease this sensitivity systematically and thus improve the robustness of the detection performance to the uncertainties in the initial parameter estimates. To tackle the resultant complicated and nonlinear robust waveform optimization issue, a new diagonal loading (DL) based iterative approach is developed, in which the inner and outer optimization problems can be relaxed to convex problems by using DL method, and hence both of them can be solved very effectively. As compared to the non-robust method and uncorrelated waveforms, numerical simulations show that the proposed method can improve the robustness of the detection performance of STAP.

  • A Simple Inter-Track Interference Subtraction Technique in Bit-Patterned Media Recording (BPMR) Systems

    Chaiwat BUAJONG  Chanon WARISARN  

     
    PAPER-Storage Technology

      Vol:
    E101-C No:5
      Page(s):
    404-408

    In this paper, we demonstrate how to subtract the intertrack interference (ITI) before the decoding process in multi-track multi-head bit-patterned media recording (BPMR) system, which can obtain a better bit error rate (BER) performance. We focus on the three-track/three-head BPMR channel and propose the ITI subtraction technique that performs together with a rate-5/6 two dimensional (2D) modulation code. Since the coded system can provide the estimated recorded bit sequence with a high reliability rate for the center track. However, the upper and lower data sequences still be interfered with their sidetracks, which results to have a low reliability rate. Therefore, we propose to feedback the data from the center and upper tracks for subtracting the ITI effect of the lower track. Meanwhile, the feedback data from the center and lower tracks will be also used to subtract the ITI effect of the upper track. The use of our proposed technique can effectively reduce the severity of ITI effect which caused from the two sidetracks. The computer simulation results in the presence of position and size fluctuations show that the proposed system yields better BER performance than a conventional coded system, especially when an areal density (AD) is ultra high.

  • A Dynamic Latched Comparator Using Area-Efficient Stochastic Offset Voltage Detection Technique

    Takayuki OKAZAWA  Ippei AKITA  

     
    PAPER-Integrated Electronics

      Vol:
    E101-C No:5
      Page(s):
    396-403

    This paper presents a self-calibrating dynamic latched comparator with a stochastic offset voltage detector that can be realized by using simple digital circuitry. An offset voltage of the comparator is compensated by using a statistical calibration scheme, and the offset voltage detector uses the uncertainty in the comparator output. Thanks to the simple offset detection technique, all the calibration circuitry can be synthesized using only standard logic cells. This paper also gives a design methodology that can provide the optimal design parameters for the detector on the basis of fundamental statistics, and the correctness of the design methodology was statistically validated through measurement. The proposed self-calibrating comparator system was fabricated in a 180 nm 1P6M CMOS process. The prototype achieved a 38 times improvement in the three-sigma of the offset voltage from 6.01 mV to 158 µV.

  • A Near-Optimal Receiver for MSK Modulation Under Symmetric Alpha-Stable Noise

    Kaijie ZHOU  Huali WANG  Huan HAO  Zhangkai LUO  

     
    LETTER-Digital Signal Processing

      Vol:
    E101-A No:5
      Page(s):
    850-854

    This paper proposes a matched myriad filter based detector for MSK signal under symmetric alpha-stable (SαS) noise. As shown in the previous literatures, SαS distribution is more accurate to characterize the atmospheric noise, which is the main interference in VLF communication. MSK modulation is widely used in VLF communication for its high spectral efficiency and constant envelope properties. However, the optimal detector for MSK under SαS noise is rarely reported due to its memory modulation characteristic. As MSK signal can be viewed as a sinusoidal pulse weighted offset QPSK (OQPSK), a matched myriad filter is proposed to derive a near-optimal detection performance for the in-phase and quadrature components, respectively. Simulations for MSK demodulation under SαS noise with different α validate the effectiveness of the proposed method.

  • Operator-Based Reset Control for Nonlinear System with Unknown Disturbance

    Mengyang LI  Mingcong DENG  

     
    PAPER-Systems and Control

      Vol:
    E101-A No:5
      Page(s):
    755-762

    In this paper, operator-based reset control for a class of nonlinear systems with unknown bounded disturbance is considered using right coprime factorization approach. In detail, firstly, for dealing with the unknown bounded disturbance of the nonlinear systems, operator-based reset control framework is proposed based on right coprime factorization. By the proposed framework, robust stability of the nonlinear systems with unknown bounded disturbance is guaranteed by using the proposed reset controller. Secondly, under the reset control framework, an optimal design scheme is discussed for minimizing the error norm based on the proposed operator-based reset controller. Finally, for conforming effectiveness of the proposed design scheme, a simulation example is given.

  • A Stayed Location Estimation Method for Sparse GPS Positioning Information Based on Positioning Accuracy and Short-Time Cluster Removal

    Sae IWATA  Tomoyuki NITTA  Toshinori TAKAYAMA  Masao YANAGISAWA  Nozomu TOGAWA  

     
    PAPER-Intelligent Transport System

      Vol:
    E101-A No:5
      Page(s):
    831-843

    Cell phones with GPS function as well as GPS loggers are widely used and users' geographic information can be easily obtained. However, still battery consumption in these mobile devices is main concern and then obtaining GPS positioning data so frequently is not allowed. In this paper, a stayed location estimation method for sparse GPS positioning information is proposed. After generating initial clusters from a sequence of measured positions, the effective radius is set for every cluster based on positioning accuracy and the clusters are merged effectively using it. After that, short-time clusters are removed temporarily but measured positions included in them are not removed. Then the clusters are merged again, taking all the measured positions into consideration. This process is performed twice, in other words, two-stage short-time cluster removal is performed, and finally accurate stayed location estimation is realized even when the GPS positioning interval is five minutes or more. Experiments demonstrate that the total distance error between the estimated stayed location and the true stayed location is reduced by more than 33% and also the proposed method much improves F1 measure compared to conventional state-of-the-art methods.

  • Linear Complexity of Quaternary Sequences over Z4 Based on Ding-Helleseth Generalized Cyclotomic Classes

    Xina ZHANG  Xiaoni DU  Chenhuang WU  

     
    LETTER-Information Theory

      Vol:
    E101-A No:5
      Page(s):
    867-871

    A family of quaternary sequences over Z4 is defined based on the Ding-Helleseth generalized cyclotomic classes modulo pq for two distinct odd primes p and q. The linear complexity is determined by computing the defining polynomial of the sequences, which is in fact connected with the discrete Fourier transform of the sequences. The results show that the sequences possess large linear complexity and are “good” sequences from the viewpoint of cryptography.

  • Relay Selection Scheme Based on Path Throughput for Device-to-Device Communication in Public Safety LTE

    Taichi OHTSUJI  Kazushi MURAOKA  Hiroaki AMINAKA  Dai KANETOMO  Yasuhiko MATSUNAGA  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2017/11/13
      Vol:
    E101-B No:5
      Page(s):
    1319-1327

    Public safety networks need to more effectively meet the increasing demands for images or videos to be shared among first responders and incident commanders. Long term evolution (LTE) networks are considered to be candidates to achieve such broadband services. Capital expenditures in deploying base stations need to be decreased to introduce LTE for public safety. However, out-of-coverage areas tend to occur in cell edge areas or inside buildings because the cell areas of base stations for public safety networks are larger than those for commercial networks. The 3rd Generation Partnership Program (3GPP) in Release 13 has investigated device-to-device (D2D) based relay communication as a means to fill out-of-coverage areas in public safety LTE (PS-LTE). This paper proposes a relay selection scheme based on effective path throughput from an out-of-coverage terminal to a base station via an in-coverage relay terminal, which enables the optimal relay terminal to be selected. System level simulation results assuming on radii of 20km or less revealed that the proposed scheme could provide better user ratios that satisfied the throughput requirements for video transmission than the scheme standardized in 3GPP. Additionally, an evaluation that replicates actual group of fire-fighters indicated that the proposed scheme enabled 90% of out-of-coverage users to achieve the required throughput, i.e., 1.0Mbps, to transmit video images.

  • Thermally Assisted Superconductor Transistors for Josephson-CMOS Hybrid Memories Open Access

    Kyosuke SANO  Masato SUZUKI  Kohei MARUYAMA  Soya TANIGUCHI  Masamitsu TANAKA  Akira FUJIMAKI  Masumi INOUE  Nobuyuki YOSHIKAWA  

     
    INVITED PAPER

      Vol:
    E101-C No:5
      Page(s):
    370-377

    We have studied on thermally assisted nano-structured transistors made of superconductor ultra-thin films. These transistors potentially work as interface devices for Josephson-CMOS (complementary metal oxide semiconductor) hybrid memory systems, because they can generate a high output voltage of sub-V enough to drive a CMOS transistor. In addition, our superconductor transistors are formed with very fine lines down to several tens of nm in widths, leading to very small foot print enabling us to make large capacity hybrid memories. Our superconductor transistors are made with niobium titanium nitride (NbTiN) thin films deposited on thermally-oxidized silicon substrates, on which other superconductor circuits or semiconductor circuits can be formed. The NbTiN thickness dependence of the critical temperature and of resistivity suggest thermally activated vortex or anti-vortex behavior in pseudo-two-dimensional superconducting films plays an important role for the operating principle of the transistors. To show the potential that the transistors can drive MOS transistors, we analyzed the driving ability of the superconductor transistors with HSPICE simulation. We also showed the turn-on behavior of a MOS transistor used for readout of a CMOS memory cell experimentally. These results showed the high potential of superconductor transistors for Josephson-CMOS hybrid memories.

  • A Direct Localization Method of Multiple Distributed Sources Based on the Idea of Multiple Signal Classification

    Yanqing REN  Zhiyu LU  Daming WANG  Jian LIU  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2017/11/16
      Vol:
    E101-B No:5
      Page(s):
    1246-1256

    The Localization of distributed sources has attracted significant interest recently. There mainly are two types of localization methods which are able to estimate distributed source positions: two-step methods and direct localization methods. Unfortunately, both fail to exploit the location information and so suffer a loss in localization accuracy. By utilizing the information not used in the above, a direct localization method of multiple distributed sources is proposed in this paper that offers improved location accuracy. We construct a direct localization model of multiple distributed sources and develop a direct localization estimator with the theory of multiple signal classification. The distributed source positions are estimated via a three-dimensional grid search. We also provide Cramer-Rao Bound, computational complexity analysis and Monte Carlo simulations. The simulations demonstrate that the proposed method outperforms the localization methods above in terms of accuracy and resolution.

  • Branching Ratio Design of Optical Coupler for Cable Re-Routing Operation Support System with No Service Interruption

    Hiroshi WATANABE  Kazutaka NOTO  Yusuke KOSHIKIYA  Tetsuya MANABE  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2017/11/13
      Vol:
    E101-B No:5
      Page(s):
    1191-1196

    We describe the design and simulation of a suitable branching ratio for an optical coupler for a cable re-routing operation support system with no service interruption, and report our experimental results. We also show the risk analysis, and report that the branching ratio was 0.47 where the probability was 99.7% that the maximum acceptable cable loss of a detour line was more than that of the current line.

  • Multi-Peak Estimation for Real-Time 3D Ping-Pong Ball Tracking with Double-Queue Based GPU Acceleration

    Ziwei DENG  Yilin HOU  Xina CHENG  Takeshi IKENAGA  

     
    PAPER-Machine Vision and its Applications

      Pubricized:
    2018/02/16
      Vol:
    E101-D No:5
      Page(s):
    1251-1259

    3D ball tracking is of great significance in ping-pong game analysis, which can be utilized to applications such as TV contents and tactic analysis, with some of them requiring real-time implementation. This paper proposes a CPU-GPU platform based Particle Filter for multi-view ball tracking including 4 proposals. The multi-peak estimation and the ball-like observation model are proposed in the algorithm design. The multi-peak estimation aims at obtaining a precise ball position in case the particles' likelihood distribution has multiple peaks under complex circumstances. The ball-like observation model with 4 different likelihood evaluation, utilizes the ball's unique features to evaluate the particle's similarity with the target. In the GPU implementation, the double-queue structure and the vectorized data combination are proposed. The double-queue structure aims at achieving task parallelism between some data-independent tasks. The vectorized data combination reduces the time cost in memory access by combining 3 different image data to 1 vector data. Experiments are based on ping-pong videos recorded in an official match taken by 4 cameras located in 4 corners of the court. The tracking success rate reaches 99.59% on CPU. With the GPU acceleration, the time consumption is 8.8 ms/frame, which is sped up by a factor of 98 compared with its CPU version.

  • Pedestrian Detectability Estimation Considering Visual Adaptation to Drastic Illumination Change

    Yuki IMAEDA  Takatsugu HIRAYAMA  Yasutomo KAWANISHI  Daisuke DEGUCHI  Ichiro IDE  Hiroshi MURASE  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2018/02/20
      Vol:
    E101-D No:5
      Page(s):
    1457-1461

    We propose an estimation method of pedestrian detectability considering the driver's visual adaptation to drastic illumination change, which has not been studied in previous works. We assume that driver's visual characteristics change in proportion to the elapsed time after illumination change. In this paper, as a solution, we construct multiple estimators corresponding to different elapsed periods, and estimate the detectability by switching them according to the elapsed period. To evaluate the proposed method, we construct an experimental setup to present a participant with illumination changes and conduct a preliminary simulated experiment to measure and estimate the pedestrian detectability according to the elapsed period. Results show that the proposed method can actually estimate the detectability accurately after a drastic illumination change.

  • Training of CNN with Heterogeneous Learning for Multiple Pedestrian Attributes Recognition Using Rarity Rate

    Hiroshi FUKUI  Takayoshi YAMASHITA  Yuji YAMAUCHI  Hironobu FUJIYOSHI  Hiroshi MURASE  

     
    PAPER-Machine Vision and its Applications

      Pubricized:
    2018/02/16
      Vol:
    E101-D No:5
      Page(s):
    1222-1231

    Pedestrian attribute information is important function for an advanced driver assistance system (ADAS). Pedestrian attributes such as body pose, face orientation and open umbrella indicate the intended action or state of the pedestrian. Generally, this information is recognized using independent classifiers for each task. Performing all of these separate tasks is too time-consuming at the testing stage. In addition, the processing time increases with increasing number of tasks. To address this problem, multi-task learning or heterogeneous learning is performed to train a single classifier to perform multiple tasks. In particular, heterogeneous learning is able to simultaneously train a classifier to perform regression and recognition tasks, which reduces both training and testing time. However, heterogeneous learning tends to result in a lower accuracy rate for classes with few training samples. In this paper, we propose a method to improve the performance of heterogeneous learning for such classes. We introduce a rarity rate based on the importance and class probability of each task. The appropriate rarity rate is assigned to each training sample. Thus, the samples in a mini-batch for training a deep convolutional neural network are augmented according to this rarity rate to focus on the classes with a few samples. Our heterogeneous learning approach with the rarity rate performs pedestrian attribute recognition better, especially for classes representing few training samples.

  • Real-Time Approximation of a Normal Distribution Function for Normal-Mapped Surfaces

    Han-sung SON  JungHyun HAN  

     
    LETTER-Computer Graphics

      Pubricized:
    2018/02/06
      Vol:
    E101-D No:5
      Page(s):
    1462-1465

    This paper proposes to pre-compute approximate normal distribution functions and store them in textures such that real-time applications can process complex specular surfaces simply by sampling the textures. The proposed method is compatible with the GPU pipeline-based algorithms, and rendering is completed at real time. The experimental results show that the features of complex specular surfaces, such as the glinty appearance of leather and metallic flakes, are successfully reproduced.

  • Robust Variable Step-Size Affine Projection SAF Algorithm against Impulsive Noises

    Jae-hyeon JEON  Sang Won NAM  

     
    LETTER-Digital Signal Processing

      Vol:
    E101-A No:5
      Page(s):
    844-847

    In this Letter, a robust variable step-size affine-projection subband adaptive filter algorithm (RVSS-APSAF) is proposed, whereby a band-dependent variable step-size is introduced to improve convergence and misalignment performances in impulsive noise environments. Specifically, the weight vector is adaptively updated to achieve robustness against impulsive noises. Finally, the proposed RVSS-APSAF algorithm is tested for system identification in an impulsive noise environment.

  • The Touring Polygons Problem Revisited

    Xuehou TAN  Bo JIANG  

     
    PAPER-Algorithms and Data Structures

      Vol:
    E101-A No:5
      Page(s):
    772-777

    Given a sequence of k convex polygons in the plane, a start point s, and a target point t, we seek a shortest path that starts at s, visits in order each of the polygons, and ends at t. We revisit this touring polygons problem, which was introduced by Dror et al. (STOC 2003), by describing a simple method to compute the so-called last step shortest path maps, one per polygon. We obtain an O(kn)-time solution to the problem for a sequence of pairwise disjoint convex polygons and an O(k2n)-time solution for possibly intersecting convex polygons, where n is the total number of vertices of all polygons. A major simplification is made on the operation of locating query points in the last step shortest path maps. Our results improve upon the previous time bounds roughly by a factor of log n.

  • A Pattern Reconfigurable Antenna with Broadband Circular Polarization

    Guiping JIN  Dan LIU  Miaolan LI  Yuehui CUI  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2017/11/16
      Vol:
    E101-B No:5
      Page(s):
    1257-1261

    In this paper, a simple pattern reconfigurable antenna with broadband circular polarization is proposed. The proposed antenna consists of four rectangular loops, a feeding network and four reflectors. Circular polarization is achieved by cutting two slots on opposite sides of the loops. By controlling the states of the four PIN diodes present in the feeding network, the proposed antenna can achieve four different pattern modes at the same frequency. Experiments show that the antenna has a bandwidth of 47.6% covering 1.73-2.81GHz for reflection coefficient (|S11|)<-10dB and a bandwidth of 55% covering 1.62-2.85GHz for axial ratio <3dB. The average gain is 8.5dBi and the radiation patterns are stable.

  • Detecting Malware-Infected Devices Using the HTTP Header Patterns

    Sho MIZUNO  Mitsuhiro HATADA  Tatsuya MORI  Shigeki GOTO  

     
    PAPER-Information Network

      Pubricized:
    2018/02/08
      Vol:
    E101-D No:5
      Page(s):
    1370-1379

    Damage caused by malware has become a serious problem. The recent rise in the spread of evasive malware has made it difficult to detect it at the pre-infection timing. Malware detection at post-infection timing is a promising approach that fulfills this gap. Given this background, this work aims to identify likely malware-infected devices from the measurement of Internet traffic. The advantage of the traffic-measurement-based approach is that it enables us to monitor a large number of endhosts. If we find an endhost as a source of malicious traffic, the endhost is likely a malware-infected device. Since the majority of malware today makes use of the web as a means to communicate with the C&C servers that reside on the external network, we leverage information recorded in the HTTP headers to discriminate between malicious and benign traffic. To make our approach scalable and robust, we develop the automatic template generation scheme that drastically reduces the amount of information to be kept while achieving the high accuracy of classification; since it does not make use of any domain knowledge, the approach should be robust against changes of malware. We apply several classifiers, which include machine learning algorithms, to the extracted templates and classify traffic into two categories: malicious and benign. Our extensive experiments demonstrate that our approach discriminates between malicious and benign traffic with up to 97.1% precision while maintaining the false positive rate below 1.0%.

2721-2740hit(21534hit)