The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

7161-7180hit(21534hit)

  • An Iterative MAP Approach to Blind Estimation of SIMO FIR Channels

    Koji HARADA  Hideaki SAKAI  

     
    PAPER-Digital Signal Processing

      Vol:
    E95-A No:1
      Page(s):
    330-337

    In this paper, we present a maximum a posteriori probability (MAP) approach to the problem of blind estimation of single-input, multiple-output (SIMO), finite impulse response (FIR) channels. A number of methods have been developed to date for this blind estimation problem. Some of those utilize prior knowledge on input signal statistics. However, there are very few that utilize channel statistics too. In this paper, the unknown channel to be estimated is assumed as the frequency-selective Rayleigh fading channel, and we incorporate the channel prior distributions (and hyperprior distributions) into our model in two different ways. Then for each case an iterative MAP estimator is derived approximately. Performance comparisons over existing methods are conducted via numerical simulation on randomly generated channel coefficients according to the Rayleigh fading channel model. It is shown that improved estimation performance can be achieved through the MAP approaches, especially for such channel realizations that have resulted in large estimation error with existing methods.

  • Error Analysis of Multilevel Fast Multipole Algorithm for Electromagnetic Scattering Problems

    Seiya KISHIMOTO  Shinichiro OHNUKI  

     
    PAPER-Numerical Techniques

      Vol:
    E95-C No:1
      Page(s):
    71-78

    Error analysis of the multilevel fast multipole algorithm is studied for electromagnetic scattering problems. We propose novel error prediction and control methods and verify that the computational error for scattering problems with over one million unknowns can be precisely controlled under desired digits of accuracy. Optimum selection of truncation numbers to minimize computational error also will be discussed.

  • Indexed Swap Matching for Short Patterns

    Hua ZHAO  Songfeng LU  

     
    PAPER-Algorithms and Data Structures

      Vol:
    E95-A No:1
      Page(s):
    362-366

    Let T be a text of length n and P be a pattern of length m, both strings over a fixed finite alphabet. The Pattern Matching with Swaps problem is to find all occurrences of P in T if adjacent pattern characters can be swapped. In the Approximate Pattern Matching problem with Swaps, one seeks for every text location with a swapped match of P, the number of swaps necessary to obtain a match at the location. In this paper we provide the first off-line solution for the swap matching problem and the approximate pattern matching problem with swaps. We present a new data-structure called a Swap-transforming Tree. And we give a precise upper-bond of the number of the swapped versions of a pattern. By using the swap-transforming tree, we can solve both problems in time O(λmlog2 n) on an O(nHk) bits indexing data structure. Here λ is a constant. Our solution is more effective when the pattern is short.

  • Iterative Multi-Track ITI Canceller for Nonbinary-LDPC-Coded Two-Dimensional Magnetic Recording

    Masaaki FUJII  

     
    PAPER-Storage Technology

      Vol:
    E95-C No:1
      Page(s):
    163-171

    An iterative inter-track interference (ITI) cancelling scheme is described for multi-track signal detection in nonbinary (NB)-LDPC-coded two-dimensional magnetic recording. The multi-track iterative ITI canceller that we propose consists of multi-track soft interference cancellers (SICs), two-dimensional partial response (TDPR) filters, noise-predictive max-log-MAP detectors, and an NB-LDPC decoder. TDPR filters using an ITI-suppressing tap-weight vector mitigate ITI in the first iteration. Multi-track SICs and TDPR filters adjusted to the residual two-dimensional ISI signals efficiently detect multi-track signals in the latter iterations. The simulation results demonstrated that our proposed iterative multi-track ITI canceller achieves frame error rates close to those obtained in a non-ITI case in media-noise-dominant environments when the both-side off-track ratio is up to 50%.

  • Efficient Reconstruction of Speakerphone-Mode Cellular Phone Sound for Application to Sound Quality Assessment

    Hee-Suk PANG  Jun-Seok LIM  Oh-Jin KWON  Sang Bae CHON  Mingu LEE  Jeong-Hun SEO  

     
    LETTER-Engineering Acoustics

      Vol:
    E95-A No:1
      Page(s):
    391-394

    An efficient method is proposed for reconstructing speakerphone-mode cellular phone sound. The overall transfer function from digital PCM signals stored in a cellular phone to dummy head-recorded signals is modeled as a combination of a cellular phone transfer function (CPTF) and a cellular phone-to-listener transfer function (CPLTF). The CPTF represents the linear and nonlinear characteristics of a cellular phone and is modeled by the Volterra model. The CPLTF represents the effect of the path from a cellular phone to a dummy head and is measured. Listening tests show the effectiveness of the proposed method. An application scenario of the proposed method is also addressed for sound quality assessment of cellular phones in speakerphone mode.

  • Improving Data Confidentiality and Integrity for Data Aggregation in Wireless Sensor Networks

    Rabindra BISTA  Yong-Ki KIM  Myoung-Seon SONG  Jae-Woo CHANG  

     
    PAPER-Trust

      Vol:
    E95-D No:1
      Page(s):
    67-77

    Since wireless sensor networks (WSNs) are resources-constrained, it is very essential to gather data efficiently from the WSNs so that their life can be prolonged. Data aggregation can conserve a significant amount of energy by minimizing transmission cost in terms of the number of data packets. Many applications require privacy and integrity protection of the sampled data while they travel from the source sensor nodes to a data collecting device, say a query server. However, the existing schemes suffer from high communication cost, high computation cost and data propagation delay. To resolve the problems, in this paper, we propose a new and efficient integrity protecting sensitive data aggregation scheme for WSNs. Our scheme makes use of the additive property of complex numbers to achieve sensitive data aggregation with protecting data integrity. With simulation results, we show that our scheme is much more efficient in terms of both communication and computation overheads, integrity checking and data propagation delay than the existing schemes for protecting integrity and privacy preserving data aggregation in WSNs.

  • A Distributed Sensing and Caching Database for Cognitive Radio Systems

    Ha-Nguyen TRAN  Chen SUN  Yohannes D. ALEMSEGED  Hiroshi HARADA  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E95-B No:1
      Page(s):
    217-225

    This paper presents the efficiency of a sensing database and caching (SDB) for cognitive radio systems. The proposed SDB stores regulatory information from regulatory databases, and contains sensing information by distributed sensing schemes. Preliminary information processing for instance indexing, sorting, or applying some models or algorithms, etc. can be performed for the stored data. Available information and the results of the information processing are provided to cognitive radios in order to determine available spectrum and to facilitate dynamic spectrum access at lower sensing cost but higher sensing quality. The SDB is implemented in local networks, therefore information exchange between SDB and the cognitive radios can be realized at low latency and the amount of signaling traffic to global network can be reduced. This paper analyzes the effect of SDB and the performance evaluation was done in a certain condition. As a result, by deploying SDB a system can achieve up to 20% of reduction of sensing activities and maximum 1.3 times higher sensing quality.

  • Protecting Primary Users in Cognitive Radio Networks with Effective Capacity Loss Constraint

    Ding XU  Zhiyong FENG  Ping ZHANG  

     
    LETTER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E95-B No:1
      Page(s):
    349-353

    Cognitive radio (CR) in spectrum sharing mode allows secondary user (SU) to share the same spectrum simultaneously with primary user (PU), as long as the former guarantees no harmful interference is caused to the latter. This letter proposes a new type of constraint to protect the PU systems that are carrying delay-sensitive applications, namely the PU effective capacity loss constraint, which sets an upper bound on the maximum effective capacity loss of the PU due to the SU transmission. In addition, the PU effective capacity loss constraint is approximately transformed to the interference temperature (power) constraint, to make it easier to be implemented. As an example, we obtain a closed form expression of the SU effective capacity under the approximated peak interference power constraint and the results of simulations validate the proposed PU protection criterion.

  • A Method for Detecting Determiner Errors Designed for the Writing of Non-native Speakers of English

    Ryo NAGATA  Atsuo KAWAI  

     
    PAPER-Educational Technology

      Vol:
    E95-D No:1
      Page(s):
    230-238

    This paper proposes a method for detecting determiner errors, which are highly frequent in learner English. To augment conventional methods, the proposed method exploits a strong tendency displayed by learners in determiner usage, i.e., mistakenly omitting determiners most of the time. Its basic idea is simple and applicable to almost any conventional method. This paper also proposes combining the method with countability prediction, which results in further improvement. Experiments show that the proposed method achieves an F-measure of 0.684 and significantly outperforms conventional methods.

  • Functional Duality between Distributed Source Coding and Broadcast Channel Coding in the Case of Correlated Messages

    Suhan CHOI  Hichan MOON  Eunchul YOON  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E95-B No:1
      Page(s):
    275-278

    In this letter, functional duality between distributed source coding (DSC) with correlated messages and broadcast channel coding (BCC) with correlated messages is considered. It is shown that under certain conditions, for a given DSC problem with correlated messages, a functional dual BCC problem with correlated messages can be obtained, and vice versa. That is, the optimal encoder-decoder mappings for one problem become the optimal decoder-encoder mappings for the dual problem. Furthermore, the correlation structure of the messages in the two dual problems and the source distortion and channel cost measure for this duality are specified.

  • Accurate and Simplified Prediction of L2 Cache Vulnerability for Cost-Efficient Soft Error Protection

    Yu CHENG  Anguo MA  Minxuan ZHANG  

     
    PAPER-Trust

      Vol:
    E95-D No:1
      Page(s):
    56-66

    Soft errors caused by energetic particle strikes in on-chip cache memories have become a critical challenge for microprocessor design. Architectural vulnerability factor (AVF), which is defined as the probability that a transient fault in the structure would result in a visible error in the final output of a program, has been widely employed for accurate soft error rate estimation. Recent studies have found that designing soft error protection techniques with the awareness of AVF is greatly helpful to achieve a tradeoff between performance and reliability for several structures (i.e., issue queue, reorder buffer). Considering large on-chip L2 cache, redundancy-based protection techniques (such as ECC) have been widely employed for L2 cache data integrity with high costs. Protecting caches without accurate knowledge of the vulnerability characteristics may lead to the over-protection, thus incurring high overheads. Therefore, designing AVF-aware protection techniques would be attractive for designers to achieve a cost-efficient protection for caches, especially at early design stage. In this paper, we propose an improved AVF estimation framework for conducing comprehensive characterization of dynamic behavior and predictability of L2 cache vulnerability. We propose to employ Bayesian Additive Regression Trees (BART) method to accurately model the variation of L2 cache AVF and to quantitatively explain the important effects of several key performance metrics on L2 cache AVF. Then we employ bump hunting technique to extract some simple selecting rules based on several key performance metrics for a simplified and fast estimation of L2 cache AVF. Using the simplified L2 cache AVF estimator, we develop an AVF-aware ECC technique as an example to demonstrate the cost-efficient advantages of the AVF prediction based dynamic fault tolerant techniques. Experimental results show that compared with traditional full ECC technique, AVF-aware ECC technique reduces the L2 cache access latency by 16.5% and saves power consumption by 11.4% for SPEC2K benchmarks averagely.

  • An Efficient and Secure Service Discovery Protocol for Ubiquitous Computing Environments

    Jangseong KIM  Joonsang BAEK  Jianying ZHOU  Taeshik SHON  

     
    PAPER-Security

      Vol:
    E95-D No:1
      Page(s):
    117-125

    Recently, numerous service discovery protocols have been introduced in the open literature. Unfortunately, many of them did not consider security issues, and for those that did, many security and privacy problems still remain. One important issue is to protect the privacy of a service provider while enabling an end-user to search an alternative service using multiple keywords. To deal with this issue, the existing protocols assumed that a directory server should be trusted or owned by each service provider. However, an adversary may compromise the directory server due to its openness property. In this paper, we suggest an efficient verification of service subscribers to resolve this issue and analyze its performance and security. Using this method, we propose an efficient and secure service discovery protocol protecting the privacy of a service provider while providing multiple keywords search to an end-user. Also, we provide performance and security analysis of our protocol.

  • Effectiveness of Short-Range MIMO Using Dual-Polarized Antenna

    Ken HIRAGA  Tomohiro SEKI  Kentaro NISHIMORI  Kazuhiro UEHARA  

     
    PAPER-Radio Systems

      Vol:
    E95-B No:1
      Page(s):
    87-96

    Short-range Multiple-Input-Multiple-Output (SR-MIMO) transmission is an effective technique for achieving high-speed and short-range wireless communication. With this technique, however, the optimum aperture size of array antennas grows when the transmission distance is increased. Thus, antenna miniaturization is an important issue in SR-MIMO. In this paper, we clarify the effectiveness of using dual-polarized planar antennas as a means of miniaturizing SR-MIMO array antennas by measurements and analysis of MIMO transmission characteristics. We found that even in SR-MIMO transmission, the use of dual-polarized transmission enables higher channel capacity. Dual-polarized antennas can reduce by two thirds the array area that is needed to obtain the same channel capacity. For a transmission distance of two wavelengths, the use of a dual-polarized antenna improved the channel capacity by 26 bit/s/Hz while maintaining the same number of transmitters and receivers and the same antenna aperture size. Moreover, dual-polarized SR-MIMO has a further benefit when zero-forcing (ZF) reception without transmit beamforming is adopted, i.e., it effectively simplifies hardware configuration because it can reduce spatial correlation even in narrow element spacing. In this work, we confirmed that the application of dual-polarization to SR-MIMO is an effective way to both increase channel capacity and enhance transceiver simplification.

  • Optimization of Field Decomposition for a Mode Matching Technique

    Shinichiro OHNUKI  Takahisa MOCHIZUKI  Kenichiro KOBAYASHI  Tsuneki YAMASAKI  

     
    BRIEF PAPER-Scattering and Diffraction

      Vol:
    E95-C No:1
      Page(s):
    101-104

    We introduce a novel method to optimize field decomposition for a mode matching technique. Using our method, expanded mode numbers can be minimized to achieve the desired digits of computational accuracy.

  • A Uniform Asymptotic Solution for Reflection and Beam Shift of a Gaussian Beam at a Plane Dielectric Interface

    Dinh Trong QUANG  Keiji GOTO  Toru KAWANO  Toyohiko ISHIHARA  

     
    PAPER-Scattering and Diffraction

      Vol:
    E95-C No:1
      Page(s):
    16-26

    The problem of a Gaussian beam that is incident on a plane dielectric interface from a denser dielectric medium to a rarer one and is reflected at the interface has been important research subjects studied by many researchers. In this paper, we have obtained a novel uniform asymptotic solution for reflection and beam shift of the Gaussian beam that is incident on the interface from the denser medium. The uniform asymptotic solution consists of the geometrically reflected beam, the lateral beam if any, and the newly derived transition beam which plays an important role in the transition region near the critical angle of the total reflection. We have confirmed the validity of the uniform asymptotic solution by comparing with the reference solution obtained numerically from the integral representation. We have shown that, in addition to the Goos-Hanchen shift and the angular shift, the Gaussian beam is shifted to either direction by the interference of the geometrically reflected beam and the lateral beam near the critical angle of the total reflection.

  • A Total-Field/Scattered-Field Boundary for the Multi-Dimensional CIP Method

    Yoshiaki ANDO  Satoi MURAKOSHI  

     
    PAPER-Electromagnetic Theory

      Vol:
    E95-C No:1
      Page(s):
    115-121

    A total-field/scattered-field (TF/SF) boundary for the constrained interpolation profile (CIP) method is proposed for multi-dimensional electromagnetic problems. Incident fields are added to or subtracted from update equations in order to satisfy advection equations into which Maxwell's equations are reduced by means of the directional splitting. Modified incident fields are introduced to take into account electromagnetic fields after advection. The developed TF/SF boundary is examined numerically, and the results show that it operates with good performance. Finally, we apply the proposed TF/SF boundary to a scattering problem, and it can be solved successfully.

  • Efficient Sequential Architecture of AES CCM for the IEEE 802.16e

    Jae Deok JI  Seok Won JUNG  Jongin LIM  

     
    LETTER-Privacy

      Vol:
    E95-D No:1
      Page(s):
    185-187

    In this paper, we propose efficient sequential AES CCM architecture for the IEEE 802.16e. In the proposed architecture, only one AES encryption core is used and the operation of the CTR and the CBC-MAC is processed concurrently within one round. With this design approach, we can design sequential AES CCM architecture having 570 Mbps@102.4 MHz throughput and 1,397 slices at a Spartan3 3s5000 device.

  • Solving a 676-Bit Discrete Logarithm Problem in GF(36n)

    Takuya HAYASHI  Naoyuki SHINOHARA  Lihua WANG  Shin'ichiro MATSUO  Masaaki SHIRASE  Tsuyoshi TAKAGI  

     
    PAPER-Mathematics

      Vol:
    E95-A No:1
      Page(s):
    204-212

    Pairings on elliptic curves over finite fields are crucial for constructing various cryptographic schemes. The ηT pairing on supersingular curves over GF(3n) is particularly popular since it is efficiently implementable. Taking into account the Menezes-Okamoto-Vanstone attack, the discrete logarithm problem (DLP) in GF(36n) becomes a concern for the security of cryptosystems using ηT pairings in this case. In 2006, Joux and Lercier proposed a new variant of the function field sieve in the medium prime case, named JL06-FFS. We have, however, not yet found any practical implementations on JL06-FFS over GF(36n). Therefore, we first fulfill such an implementation and we successfully set a new record for solving the DLP in GF(36n), the DLP in GF(36·71) of 676-bit size. In addition, we also compare JL06-FFS and an earlier version, named JL02-FFS, with practical experiments. Our results confirm that the former is several times faster than the latter under certain conditions.

  • A Least Bit Error Rate Adaptive Array for MultiLevel Modulations

    Satoshi DENNO  Daisuke UMEHARA  Masahiro MORIKURA  

     
    PAPER-Radio Systems

      Vol:
    E95-B No:1
      Page(s):
    69-76

    This paper proposes an adaptive algorithm for adaptive arrays that minimizes the bit error rate (BER) of the array output signals in radio communication systems with the use of multilevel modulation signals. In particular, amplitude phase shift keying (APSK) is used as one type of multilevel modulations in this paper. Simultaneous non-linear equations that are satisfied by the optimum weight vector of the proposed algorithm are derived and used for theoretical analyze of the performance of the adaptive array based on the proposed algorithm. As a result of the theoretical analysis, it can be shown that the proposed adaptive array improves the carrier to interference ratio of the array output signal without taking advantage of the nulls. Furthermore, it is confirmed that the result of the theoretical analysis agrees with that of computer simulation. When the number of the received antenna is less than that of the received signals, the adaptive array based on the proposed algorithm is verified to achieve much better performance then that based on the least mean square (LMS) algorithm.

  • Narrow Fingerprint Sensor Verification with Template Updating Technique

    SangWoo SIN  Ru ZHOU  Dongju LI  Tsuyoshi ISSHIKI  Hiroaki KUNIEDA  

     
    PAPER-Algorithms and Data Structures

      Vol:
    E95-A No:1
      Page(s):
    346-353

    A novel Template Updating system for fingerprint verification systems used in mobile applications is introduced in the paper. Based on the proposed method, the system performance is improved much more than the original one. Not only the FRR (False Reject Rate) but also the small overlap problem caused by the very narrow sensor on the mobile phone are solved. Based on the template updating system, templates are replaced with matched inputs towards a target structure which can expand the coverage of templates with large displacement and rotation. By using the test database, the system performance shows the FRR can be reduced by 79% in comparison with the one without template updating procedure. This system was adopted in practical mobile phones in the commercial market in 2009.

7161-7180hit(21534hit)