The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

9081-9100hit(21534hit)

  • Empirical-Statistics Analysis for Zero-Failure GaAs MMICs Life Testing Data

    Zheng-Liang HUANG  Fa-Xin YU  Shu-Ting ZHANG  Hao LUO  Ping-Hui WANG  Yao ZHENG  

     
    LETTER-Reliability, Maintainability and Safety Analysis

      Vol:
    E92-A No:9
      Page(s):
    2376-2379

    GaAs MMICs (Monolithic Microwave Integrated Circuits) reliability is a critical part of the overall reliability of the thermal solution in semiconductor devices. With MMICs reliability improved, GaAs MMICs failure rates will reach levels which are impractical to measure with conventional methods in the near future. This letter proposes a methodology to predict the GaAs MMICs reliability by combining empirical and statistical methods based on zero-failure GaAs MMICs life testing data. Besides, we investigate the effect of accelerated factors on MMICs degradation and make a comparison between the Weibull and lognormal distributions. The method has been used in the reliability evaluation of GaAs MMICs successfully.

  • Signal Subspace Interpolation from Discrete Measurement Samples in Constructing a Database for Location Fingerprint Technique

    Panarat CHERNTANOMWONG  Jun-ichi TAKADA  Hiroyuki TSUJI  

     
    PAPER-Antennas and Propagation

      Vol:
    E92-B No:9
      Page(s):
    2922-2930

    In this paper, a method of the signal subspace interpolation to constructing a continuous fingerprint database for radio localization is proposed. When using the fingerprint technique, enhancing the accuracy of location estimation requires very fine spatial resolution of the database, which entails much time in collecting the data to build up the database. Interpolated signal subspace is presented to achieve a fine spatial resolution of the fingerprint database. The angle of arrival (AOA) and the measured signal subspace at known locations are needed to obtain the interpolated signal subspaces. The effectiveness of this method is verified by an outdoor experiment and the estimated location using this method was compared with those using the geometrically calculated fingerprint and the measured signal subspace fingerprint techniques.

  • Blind Image-Band Interference Canceller Based on CM (Constant Modulus) Criteria for Multimode Receivers

    Satoshi DENNO  Tatsuo FURUNO  Masahiro MORIKURA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E92-B No:9
      Page(s):
    2903-2914

    This paper proposes a blind image-band interference canceller that enables heterodyne receivers with only a single receiver chain to demodulate signals in any frequency band. In this paper, such a receiver is called "multimode/multiband heterodyne receiver." If multimode/multiband receivers are desired to receive signals with carrier frequency ranging from several MHz to GHz, then, such receivers are not allowed to have a narrow band RF-BPF (Radio Frequency Band Pass Filter) at the RF front end. However, although heterodyne receivers have been applied to wireless systems due to their high performance, it is known that without an RF-BPF heterodyne receivers suffer from severe image-band interference. Therefore, a blind image-band interference canceller is proposed in this paper to mitigate the image-band interference. Moreover, a novel algorithm based on the CM (Constant Modulus) criterion is proposed to carry out the cancellation. Performance of the blind image-band interference canceller is theoretically analyzed and the performance of the proposed canceller is verified by computer simulation. As a result, it is shown that the blind image-band interference canceller achieves superior performance even in the presence of strong image-band interference, for example, CIR=-40 dB. In summary, the proposed canceller makes it possible for the receiver with the single receiver chain to achieve multimode/multiband communications with high quality.

  • Introduction of Frequency-Domain Signal Processing to Broadband Single-Carrier Transmissions in a Wireless Channel Open Access

    Fumiyuki ADACHI  Hiromichi TOMEBA  Kazuki TAKEDA  

     
    INVITED SURVEY PAPER

      Vol:
    E92-B No:9
      Page(s):
    2789-2808

    Recently, frequency-domain equalization (FDE) has been attracting much attention as a way to improve single-carrier (SC) signal transmission in a frequency-selective wireless channel. Since the SC signal spectrum is spread over the entire signal bandwidth, FDE can take advantage of channel frequency-selectivity and achieve the frequency diversity gain. SC with FDE is a promising wireless signal transmission technique. In this article, we review the pioneering research done on SC with FDE. The principles of simple one-tap FDE, channel estimation, and residual inter-symbol interference (ISI) cancellation are presented. Multi-input/multi-output (MIMO) is an important technique to improve the transmission performance. Some of the studies on MIMO/SC with FDE are introduced.

  • Flow-Level Fair Queue Management Scheme Stabilizing Buffer Utilization

    Yusuke SHINOHARA  Norio YAMAGAKI  Hideki TODE  Koso MURAKAMI  

     
    PAPER-Network

      Vol:
    E92-B No:9
      Page(s):
    2838-2850

    Multimedia traffic on the Internet is rapidly increasing with the advent of broadband networks. However, the Best-Effort (BE) service used with Internet Protocol (IP) networking was never intended to guarantee Quality of Service (QoS) for each user. Therefore, the realization of QoS guarantees has become a very important issue. Previously, we have proposed a queue management scheme, called Dual Metrics Fair Queuing (DMFQ), to improve fairness and to guarantee QoS. DMFQ improves fairness and throughput by considering the amount of instantaneous and historical network resources consumed per flow. In addition, DMFQ has characteristics of high speed and high scalability because it is hardware oriented. However, DMFQ may be unable to adapt to network fluctuations, given that it has static setup parameters. Moreover, DMFQ is unable to support a multiclass environment. In this paper, we propose a new buffer management scheme based on DMFQ that can adapt flexibly to network conditions and can provide classified services. The proposed scheme stabilizes buffer utilization within a fixed range by controlling the buffer threshold, which affects the calculated packet discard probability. Moreover, by applying the proposed scheme to Differentiated Services (DiffServ), we achieve prioritized buffer management.

  • Threshold Selection Based on Interval-Valued Fuzzy Sets

    Chang Sik SON  Suk Tae SEO  In Keun LEE  Hye Cheun JEONG  Soon Hak KWON  

     
    LETTER-Image Recognition, Computer Vision

      Vol:
    E92-D No:9
      Page(s):
    1807-1810

    We propose a thresholding method based on interval-valued fuzzy sets which are used to define the grade of a gray level belonging to one of the two classes, an object and the background of an image. The effectiveness of the proposed method is demonstrated by comparing our classification results on eight test images to results from the conventional methods.

  • Advanced MMIC Receiver for 94-GHz Band Passive Millimeter-Wave Imager Open Access

    Masaru SATO  Tatsuya HIROSE  Koji MIZUNO  

     
    INVITED PAPER

      Vol:
    E92-C No:9
      Page(s):
    1124-1129

    In this paper, we present the development of an advanced MMIC receiver for a 94-GHz band passive millimeter-wave (PMMW) imager. Our configuration is based on a Dicke receiver in order to reduce fluctuations in the detected voltage. By introducing an electronic switch in the MMIC, we achieved a high resolution millimeter-wave image in a shorter image collection time compared to that with a conventional mechanical chopper. We also developed an imaging array using MMIC receivers.

  • Color Image Retrieval Based on Distance-Weighted Boundary Predictive Vector Quantization Index Histograms

    Zhen SUN  Zhe-Ming LU  Hao LUO  

     
    LETTER-Image Processing and Video Processing

      Vol:
    E92-D No:9
      Page(s):
    1803-1806

    This Letter proposes a new kind of features for color image retrieval based on Distance-weighted Boundary Predictive Vector Quantization (DWBPVQ) Index Histograms. For each color image in the database, 6 histograms (2 for each color component) are calculated from the six corresponding DWBPVQ index sequences. The retrieval simulation results show that, compared with the traditional Spatial-domain Color-Histogram-based (SCH) features and the DCTVQ index histogram-based (DCTVQIH) features, the proposed DWBPVQIH features can greatly improve the recall and precision performance.

  • Spectral Fluctuation Method: A Texture-Based Method to Extract Text Regions in General Scene Images

    Yoichiro BABA  Akira HIROSE  

     
    PAPER-Pattern Recognition

      Vol:
    E92-D No:9
      Page(s):
    1702-1715

    To obtain text information included in a scene image, we first need to extract text regions from the image before recognizing the text. In this paper, we examine human vision and propose a novel method to extract text regions by evaluating textural variation. Human beings are often attracted by textural variation in scenes, which causes foveation. We frame a hypothesis that texts also have similar property that distinguishes them from the natural background. In our method, we calculate spatial variation of texture to obtain the distribution of the degree of likelihood of text region. Here we evaluate the changes in local spatial spectrum as the textural variation. We investigate two options to evaluate the spectrum, that is, those based on one- and two-dimensional Fourier transforms. In particular, in this paper, we put emphasis on the one-dimensional transform, which functions like the Gabor filter. The proposal can be applied to a wide range of characters mainly because it employs neither templates nor heuristics concerning character size, aspect ratio, specific direction, alignment, and so on. We demonstrate that the method effectively extracts text regions contained in various general scene images. We present quantitative evaluation of the method by using databases open to the public.

  • Beam Tilting Characteristics of a Slot Antenna Element with Reactance Loading

    Ki-Chai KIM  Kazuhiro HIRASAWA  

     
    LETTER-Antennas and Propagation

      Vol:
    E92-B No:9
      Page(s):
    2984-2986

    This letter presents beam tilting characteristics of a slot antenna element with reactance loading. It is found that the beam tilt is obtained by controlling aperture electric field distributions with a loaded reactance on the slot. A large beam tilt angle is obtained when an inductive reactance element is loaded.

  • Mining Noise-Tolerant Frequent Closed Itemsets in Very Large Database

    Junbo CHEN  Bo ZHOU  Xinyu WANG  Yiqun DING  Lu CHEN  

     
    PAPER-Data Mining

      Vol:
    E92-D No:8
      Page(s):
    1523-1533

    Frequent Itemsets(FI) mining is a popular and important first step in analyzing datasets across a broad range of applications. There are two main problems with the traditional approach for finding frequent itemsets. Firstly, it may often derive an undesirably huge set of frequent itemsets and association rules. Secondly, it is vulnerable to noise. There are two approaches which have been proposed to address these problems individually. The first problem is addressed by the approach Frequent Closed Itemsets(FCI), FCI removes all the redundant information from the result and makes sure there is no information loss. The second problem is addressed by the approach Approximate Frequent Itemsets(AFI), AFI could identify and fix the noises in the datasets. Each of these two concepts has its own limitations, however, the authors find that if FCI and AFI are put together, they could help each other to overcome the limitations and amplify the advantages. The new integrated approach is termed Noise-tolerant Frequent Closed Itemset(NFCI). The results of the experiments demonstrate the advantages of the new approach: (1) It is noise tolerant. (2) The number of itemsets generated would be dramatically reduced with almost no information loss except for the noise and the infrequent patterns. (3) Hence, it is both time and space efficient. (4) No redundant information is in the result.

  • W-Disjoint Orthogonality Based Residual Acoustic Echo Cancellation for Hands-Free Communication

    Yoonjae LEE  Kihyeon KIM  Jongsung YOON  Hanseok KO  

     
    LETTER-Digital Signal Processing

      Vol:
    E92-A No:8
      Page(s):
    2129-2132

    A simple and novel residual acoustic echo cancellation method that employs binary masking is proposed to enhance the speech quality of hands-free communication in an automobile environment. In general, the W-disjoint orthogonality assumption is used for blind source separation using multi-microphones. However, in this Letter, it is utilized to mask the residual echo component in the time-frequency domain using a single microphone. The experimental results confirm the effectiveness of the proposed method in terms of the echo return loss enhancement and speech enhancement.

  • Multiple Metrics Gateway Selection Scheme in Mobile Ad Hoc Network (MANET) and Infrastructure Network Integration

    Fudhiyanto Pranata SETIAWAN  Safdar H. BOUK  Iwao SASASE  

     
    PAPER-Network

      Vol:
    E92-B No:8
      Page(s):
    2619-2627

    This paper proposes a scheme to select an appropriate gateway based on multiple metrics such as remaining energy, mobility or speed, and number of hops in Mobile Ad Hoc Network (MANET) and the infrastructure network integration. The Multiple Criteria Decision Making (MCDM) method called Simple Additive Weighting (SAW) is used to rank and to select the gateway node. SAW method calculates the weights of gateway node candidates by considering these three metrics. The node with the highest weight will be selected as the gateway. Simulation results show that our scheme can reduce the average energy consumption of MANET nodes, and improve throughput performance, gateway lifetime, Packet Delivery Ratio (PDR) of the MANET and the infrastructure network.

  • Integer Variable χ-Based Cross Twisted Ate Pairing and Its Optimization for Barreto-Naehrig Curve

    Yasuyuki NOGAMI  Yumi SAKEMI  Hidehiro KATO  Masataka AKANE  Yoshitaka MORIKAWA  

     
    PAPER-Theory

      Vol:
    E92-A No:8
      Page(s):
    1859-1867

    It is said that the lower bound of the number of iterations of Miller's algorithm for pairing calculation is log 2r/(k), where () is the Euler's function, r is the group order, and k is the embedding degree. Ate pairing reduced the number of the loops of Miller's algorithm of Tate pairing from ⌊log 2r⌋ to ⌊ log 2(t-1)⌋, where t is the Frobenius trace. Recently, it is known to systematically prepare a pairing-friendly elliptic curve whose parameters are given by a polynomial of integer variable "χ." For such a curve, this paper gives integer variable χ-based Ate (Xate) pairing that achieves the lower bound. In the case of the well-known Barreto-Naehrig pairing-friendly curve, it reduces the number of loops to ⌊log 2χ⌋. Then, this paper optimizes Xate pairing for Barreto-Naehrig curve and shows its efficiency based on some simulation results.

  • Memory-Efficient and High-Performance Two-Dimensional Discrete Wavelet Transform Architecture Based on Decomposed Lifting Algorithm

    Peng CAO  Chao WANG  Longxing SHI  

     
    PAPER-Digital Signal Processing

      Vol:
    E92-A No:8
      Page(s):
    2000-2008

    The line-based method has been one of the most commonly-used methods of hardware implementation of two-dimensional (2D) discrete wavelet transform (DWT). However, data buffer is required between the row DWT processor and the column DWT processor to solve the data flow mismatch, which increases the on-chip memory size and the output latency. Since the incompatible data flow is induced from the intrinsic property of adopted lifting-based algorithm, a decomposed lifting algorithm (DLA) is presented by rearranging the data path of lifting steps to ensure that image data is processed in raster scan manner in row processor and column processor. Theoretical analysis indicates that the precision issue of DLA outperforms other lifting-based algorithms in terms of round-off noise and internal word-length. A memory-efficient and high-performance line-based architecture is proposed based on DLA without the implementation of data buffer. For an N M image, only 2N internal memory is required for 5/3 filter and 4N of that is required for 9/7 filter to perform 2D DWT, where N and M indicate the width and height of an image. Compared with related 2D DWT architectures, the size of on-chip memory is reduced significantly under the same arithmetic cost, memory bandwidth and timing constraint. This design was implemented in SMIC 0.18 µm CMOS logic fabrication with 32 kbits dual-port RAM and 20 K equivalent 2-input NAND gates in a 1.00 mm 1.00 mm die, which can process 512 512 image under 100 MHz.

  • Approximate Algorithm for Hybrid Model Predictive Control with Time-Varying Reference

    Koichi KOBAYASHI  Kunihiko HIRAISHI  Nguyen Van TANG  

     
    PAPER-Systems and Control

      Vol:
    E92-A No:8
      Page(s):
    2046-2052

    In this paper, we propose a new approximate algorithm for the model predictive control (MPC) problem with a time-varying reference of hybrid systems. The proposed algorithm consists of an offline computation and an online computation. In the offline computation, candidates of mode sequences are derived. In the online computation, after the mode sequence is uniquely decided among candidates, the finite-time optimal control problem, i.e., the quadratic programming problem, is solved. So by applying the proposed algorithm, the computational amount of the online computation is decreased. First, the MPC problem with a time-varying reference is formulated. Next, the proposed algorithm is explained, and the accuracy of the obtained approximate solution is discussed. Finally, the effectiveness of the proposed method is shown by a numerical example.

  • Viterbi-Type Inter-Carrier Interference Equalization for OFDM over Doubly Selective Channels

    Shuichi OHNO  Kok Ann Donny TEO  

     
    PAPER-Communications

      Vol:
    E92-A No:8
      Page(s):
    1905-1912

    Orthogonal Frequency Division Multiplexing (OFDM) transmission is robust to frequency-selective channels but sensitive to time-selective channels. Time variations of channels generate inter-carrier interference (ICI), which degrades system performance. In this paper, we develop frequency-domain Viterbi-type algorithm to effectively suppress the ICI, by exploiting the property of ICI terms in OFDM symbols. Null subcarriers, which are embedded in OFDM symbols for the reduction of interferences from/to adjacent bands, are exploited to reduce the complexity of the algorithm. Then, an approximate BER expression of Viterbi-type equalizer is derived. Simulations are provided to show the Viterbi-type equalizer works well in time- and frequency-selective (doubly selective) channel with affordable complexity.

  • Synchronization and Hyperchaos in Switched Dynamical Systems Based on Parallel Buck Converters

    Toshimichi SAITO  Daisuke KIMURA  

     
    PAPER-Nonlinear Problems

      Vol:
    E92-A No:8
      Page(s):
    2061-2066

    This paper studies switched dynamical systems based on a simplified model of two-paralleled dc-dc buck converters in current mode control. In the system, we present novel four switching rules depending on both state variables and periodic clock. The system has piecewise constant vector field and piecewise linear solutions: they are well suited for precise analysis. We then clarify parameter conditions that guarantee generation of stable 2-phase synchronization and hyperchaos for each switching rule. Especially, it is clarified that stable synchronization is always possible by proper use of the switching rules and adjustment of clock period. Presenting a simple test circuit, typical phenomena are confirmed experimentally.

  • Low Power 10-b 250 Msample/s CMOS Cascaded Folding and Interpolating A/D Converter

    Zhi-Yuan CUI  Yong-Gao JIN  Nam-Soo KIM  Ho-Yong CHOI  

     
    PAPER-Electronic Circuits

      Vol:
    E92-C No:8
      Page(s):
    1073-1079

    This paper introduces a new folding amplifier in a folding and interpolating 10-b ADC. The amplifier consists of current mirrors and differential stages. Only one current source is exploited in cascaded differential pairs, which reduces the power consumption significantly. In the folding circuit, the interpolation is implemented with a current division technique. An experiment of the amplifier in 10-b folding signal has been integrated in a single-poly four-metal 0.35 µm CMOS process. The simulation in 10-b folding ADC shows that power consumption is 225 mW at the sampling speed of 250 Msample/s and the power supply of 3.3 V. The preliminary experiment indicates the current steering folder and digital bits operate as expected.

  • A Low Complexity Adaptive Algorithm for Eigenspace-Based Two-Dimensional Direction of Arrival Tracking

    Kuo-Hsiung WU  Wen-Hsien FANG  

     
    PAPER-Intelligent Transport System

      Vol:
    E92-A No:8
      Page(s):
    2097-2106

    In this paper, we present a low complexity, yet accurate adaptive algorithm for the tracking of two-dimensional (2-D) direction of arrival (DOAs) based on a uniform rectangular array (URA). The new algorithm is a novel hybrid of tracking and beamforming processes by making use of three stages of one-dimensional (1-D) DOA tracking algorithms -- in a hierarchical tree structure -- to determine the two DOA components iteratively in a coarse-fine manner. In between every other 1-D DOA tracking algorithm, a complementary orthogonal beamforming process is invoked to partition the incoming signals into appropriate groups to enhance the tracking accuracy. Since the new algorithm only involves the 1-D subspace-based DOA tracking algorithm, the overall complexity is substantially less than the direct two-dimensional (2-D) extension of the existing 1-D DOA tracking algorithms, which requires an update of higher-dimensional vectors followed by a higher-dimensional eigendecomposition or a 2-D search. Furthermore, with the tree-structured DOA tracking scheme, the tracked 2-D DOA components are automatically paired without extra computational overhead. Furnished simulations show that the new algorithm can provide satisfactory tracking performance in various scenarios.

9081-9100hit(21534hit)