The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Ti(30728hit)

21961-21980hit(30728hit)

  • Postprocessing Algorithm in Block-Coded Images Using the Adaptive Filters along the Pattern of Neighborhood Blocks

    Suk-Hwan LEE  Seong-Geun KWON  Kee-Koo KWON  Byung-Ju KIM  Kuhn-Il LEE  

     
    LETTER-Image Processing, Image Pattern Recognition

      Vol:
    E85-D No:12
      Page(s):
    1967-1974

    A postprocessing algorithm is presented for blocking artifact reduction in block-coded images using the adaptive filters along the pattern of neighborhood blocks. Blocking artifacts appear as irregular high-frequency components at block boundaries, thereby reducing the noncorrelation between blocks due to the independent quantization process of each block. Accordingly, block-adaptive filtering is proposed to remove such components and enable similar frequency distributions within two neighborhood blocks and a high correlation between blocks. This type of filtering consists of inter-block filtering to remove blocking artifacts at the block boundaries and intra-block filtering to remove ringing noises within a block. First, each block is classified into one of seven classes based on the characteristics of the DCT coefficient and MV (motion vector) received in the decoder. Thereafter, adaptive intra-block filters, approximated to the normalized frequency distributions of each class, are applied adaptively according to the various patterns and frequency distributions of each block as well as the filtering directions in order to reduce the blocking artifacts. Finally, intra-block filtering is performed on those blocks classified as complex to reduce any ringing noise without blurring the edges. Experimental tests confirmed the effectiveness of the proposed algorithm.

  • Efficient Computation of MoM Matrix Elements in Analysis of General Microstrip Structure

    Young-Soon LEE  Eui-Joong KIM  Young-Ki CHO  

     
    PAPER-Electromagnetic Theory

      Vol:
    E85-C No:12
      Page(s):
    2109-2116

    An efficient method for calculating impedance matrix elements is proposed for analysis of microstrip structures with an arbitrary substrate thickness. Closed-form Green's functions are derived by applying the GPOF method to the remaining function after the extraction of the contributions of the surface wave pole, source dipole itself, and quasi-static (i.e.real images) from a spectral domain Green's function. When closed-form Green's functions are used in conjunction with rooftop-pulse subsectional basis functions and the razor testing function in an MoM with an MPIE formulation, the integrals appearing in the calculation procedure of the diagonal matrix elements are of two types. The first is x0n [e^(-jk0(x02 + y02 +a2)1/2)/(x02 + y02 +a2)1/2)]dx0dy0 (where n=0, 1) for the contribution of both the source dipole itself or real images where a=0 and complex images where a=complex constant, while the other is x0n H0(2)(kρp (x02 + y02)1/2)dx0dy0 for the contribution of the surface wave pole where kρp is a real pole due to the surface wave. Adopting a polar coordinate for the integral for both cases of n=0 and n=1 and performing analytical integrations for n=1 with respect to the variable x0 for both types not only removes the singularities but also drastically reduces the evaluation time for the numerical integration. In addition, the above numerical efficiency is also retained for the off-diagonal elements. To validate the proposed method, several numerical examples are presented.

  • 3D Simulations of Optical Near-Field Distributions of Planar Objects by Volume Integral Equation

    Mengyun YAN  Kazuo TANAKA  Masahiro TANAKA  

     
    PAPER

      Vol:
    E85-C No:12
      Page(s):
    2047-2054

    Optical near-field distributions of planar dielectric and metallic objects placed on a large dielectric substrate plate have been calculated by the volume integral equation using an iterative method called generalized minimal residual method with the fast Fourier transform technique. The basic characteristics of the near-field have been investigated in detail for large and small objects, dielectric and metallic objects and incident p-polarized and s-polarized evanescent fields.

  • A Data Embedding Method Considering the Finite Word-Length for High Quality Images

    Masaaki FUJIYOSHI  Takashi TACHIBANA  Hitoshi KIYA  

     
    PAPER

      Vol:
    E85-A No:12
      Page(s):
    2830-2838

    A novel data embedding method for high-quality images, e.g., an image with a peak signal-to-noise ratio of better than 60 [dB] is proposed in this paper. The proposed method precisely generates a watermarked image of the desired and high quality for any images. To do this, this method considers the finite word-length of a luminance value of pixels, i.e., both quantization errors and the range limitation of luminance. The proposed method embeds a watermark sequence, modulated by the mechanism of a spread spectrum scheme, into the dc values of an image in the spatial domain. By employing spread spectrum technology as well as embedding a watermark into the dc values, this method guarantees the high image quality and, simultaneously, provides adequate JPEG tolerance.

  • A Symbol Synchronizer for Multi-Carrier Spread-Spectrum Systems

    Shigetaka GOTO  Akira OGAWA  

     
    LETTER

      Vol:
    E85-A No:12
      Page(s):
    2881-2885

    In this paper, we propose and describe a new synchronizer for the FFT timing applicable to multi-carrier spread-spectrum (MC-SS) communication systems. The performance of the synchronizer is evaluated in terms of false- and miss-detection probabilities in the presence of additive white Gaussian noise (AWGN) and Rayleigh fading.

  • Effectiveness of Receiver-Side Compensation against FBG Dispersion-Induced SNR Degradation in Long-Haul WDM Optical Networks

    Hideki MAEDA  Masatoyo SUMIDA  Tsutomu KUBO  Takamasa IMAI  

     
    LETTER-Fiber-Optic Transmission

      Vol:
    E85-B No:12
      Page(s):
    2943-2945

    We clarify the effectiveness of receiver-side compensation in offsetting fiber Bragg grating (FBG) dispersion induced-electrical signal-to-noise ratio (SNR) degradation in a 10 Gb/s 8-channel wavelength-division multiplexing (WDM) 6,400 km transmission system. The receiver-side compensation greatly improves the SNR degradation. The allowable accumulated FBG dispersion is -400 1000ps/nm for the worst arrangement, a single FBG at the transmitter, which is about half the accumulated fiber dispersion permissible with receiver-side compensation.

  • Investigations of Local Surface Properties by SNOM Combined with KFM Using a PZT Cantilever

    Nobuo SATOH  Shunji WATANABE  Toru FUJII  Kei KOBAYASHI  Hirofumi YAMADA  Kazumi MATSUSHIGE  

     
    PAPER

      Vol:
    E85-C No:12
      Page(s):
    2071-2076

    Scanning near-field optical microscopy (SNOM) combined with Kelvin force microscopy (KFM) using a microfabricated force-sensing cantilever with a lead zirconate titanate (PZT) thin film as an integrated deflection sensor have been developed. We applied the frequency modulation (FM) detection method to this setup to increase the detection sensitivity of electrostatic forces between a probe tip and a sample. Latex particles dispersed in a polyvinylalcohol (PVA) thin film deposited onto a glass substrate were stably imaged with the SNOM while both local optical and electrical properties of a ferroelectric thin film were successfully investigated.

  • Cost-Effective Analysis of Software Systems with Periodic Rejuvenation

    Hiroaki SUZUKI  Tadashi DOHI  Hiroyuki OKAMURA  

     
    PAPER-Reliability, Maintainability and Safety Analysis

      Vol:
    E85-A No:12
      Page(s):
    2923-2932

    In this paper, we consider the similar software cost models with periodic rejuvenation to Garg, Puliafito, Telek and Trivedi (1995) under the cost effectiveness criteria. First, an alternative model as well as the original one are analyzed by Markov regenerative processes. We derive analytically the optimal periodic software rejuvenation policies which maximize the cost-effectiveness in the steady state for two models. Further, we develop statistical non-parametric algorithms to estimate the optimal software rejuvenation policies, provided that the sample data to characterize the system failure times are given. Then, the total time on test (TTT) concept is used. In numerical examples, we compare the periodic software rejuvenation policy with the non-periodic one, and investigate the asymptotic properties of the non-parametric estimators for the optimal software rejuvenation policies through a simulation experiment.

  • Low-Complexity Frame and Coarse Frequency-Offset Synchronization Techniques for Broadband Radio Access Networks

    Hyoung-Kyu SONG  Mi-Jeong KIM  

     
    LETTER-Wireless Communication Technology

      Vol:
    E85-B No:12
      Page(s):
    2955-2959

    This letter derives low-complexity frame and coarse frequency-offset synchronization techniques for orthogonal frequency division multiplexing (OFDM)-based HIPERLAN (HIgh PErformance Radio LAN) system. We first propose a frame detector structure directly based on the correlation method and a reduced complexity structure having the similar performance compared with conventional correlation method. We then propose a coarse frequency-offset synchronization technique and show the performance of the proposed techniques by simulation.

  • Multiscale Modeling with Stable Distribution Marginals for Long-Range Dependent Network Traffic

    Chien Trinh NGUYEN  Tetsuya MIKI  

     
    PAPER-Network

      Vol:
    E85-B No:12
      Page(s):
    2828-2837

    As demonstrated by many studies, measured wide-area network traffic exhibits fractal properties, such as self-similarity, burstiness, and long-range dependence (LRD). In order to describe long-range dependent network traffic and to emphasize the performance aspects of descriptive traffic models with additive and multiplicative structures, the multifractal wavelet model (MWM), which is based on the binomial cascade, has been shown to match the behavior of network traffic over small and large time scales. In this paper, using appropriate mathematical and statistical analyses, we develop the MWM proposed in [14], which provides a complete description of long-range dependent network traffic. First, we present accurate parameters of the MWM over different time scales. Next, a marginal stable distribution of MWM network traffic data is analyzed. The accuracy of the proposed MWM compared to actual data measurements is confirmed by queuing behavior performance through computer simulations.

  • Design of Jacobi EVD Processor Based on CORDIC for DOA Estimation with MUSIC Algorithm

    Minseok KIM  Koichi ICHIGE  Hiroyuki ARAI  

     
    PAPER

      Vol:
    E85-B No:12
      Page(s):
    2648-2655

    Computing the Eigen Value Decomposition (EVD) of a symmetric matrix is a frequently encountered problem in adaptive (or smart or software) antenna signal processing, for example, super resolution DOA (Direction Of Arrival) estimation algorithms such as MUSIC (MUltiple SIgnal Classification) and ESPRIT (Estimation of Signal Parameters via Rotational Invariance Technique). In this paper the hardware architecture of the fast EVD processor of symmetric correlation matrices for the application of an adaptive antenna technology such as DOA estimation is proposed and the basic idea is also presented. Cyclic Jacobi method is well known for the simplest algorithm and easily implemented but its convergence time is slower than other factorization algorithm like QR-method. But if considering the fast parallel computation of the EVD with a hardware architecture like ASIC (Application Specific Integrated Circuit) or FPGA (Field Programmable Gate Array), the Jacobi method can be a appropriate solution, since it offers a quite higher degree of parallelism and easier implementation than other factorization algorithms. This paper computes the EVD using a Jacobi-type method, where the vector rotations and the angles of the rotations are obtained by CORDIC (COordinate Rotation DIgital Computer). The hardware architecture suitable for ASIC or FPGA with fixed-point arithmetic is presented. Because it consists of only shift and add operations, this hardware friendly feature provides easy and efficient implementation. In this paper, the computational load, the estimate of circuit scale and expected performance are discussed and the validation of fixed-point arithmetic for the practical application to MUSIC DOA estimation is examined.

  • A Computation Reduced MMSE Adaptive Array Antenna Using Space-Temporal Simultaneous Processing Equalizer

    Yoshihiro ICHIKAWA  Koji TOMITSUKA  Shigeki OBOTE  Kenichi KAGOSHIMA  

     
    PAPER

      Vol:
    E85-B No:12
      Page(s):
    2622-2629

    When we use an adaptive array antenna (AAA) with the minimum mean square error (MMSE) criterion under the multipath environment, where the receiving signal level varies, it is difficult for the AAA to converge because of the distortion of the desired wave. Then, we need the equalization both in space and time domains. A tapped-delay-line adaptive array antenna (TDL-AAA) and the AAA with linear equalizer (AAA-LE) have been proposed as simple space-temporal equalization. The AAA-LE has not utilized the recursive least square (RLS) algorithm. In this paper, we propose a space-temporal simultaneous processing equalizer (ST-SPE) that is an AAA-LE with the RLS algorithm. We proposed that the first tap weight of the LE should be fixed and the necessity of that is derived from a normal equation in the MMSE criterion. We achieved the space-temporal simultaneous equalization with the RLS algorithm by this configuration. The ST-SPE can reduce the computational complexity of the space-temporal joint equalization in comparison to the TDL-AAA, when the ST-SPE has almost the same performance as the TDL-AAA in multipath environment with minimum phase condition such as appeared at line-of-sight (LOS).

  • Data Transfer Time by HTTP 1.0/1.1 on Asymmetric Networks Composed of Satellite and Terrestrial Links

    Hiroyasu OBATA  Kenji ISHIDA  Junichi FUNASAKA  Kitsutaro AMANO  

     
    PAPER-Internet

      Vol:
    E85-B No:12
      Page(s):
    2895-2903

    Asymmetric networks, which provide asymmetric bandwidth or delay for upstream and downstream transfer, have recently gained much attention since they support popular applications such as the World Wide Web (WWW). HTTP (Hypertext Transfer Protocol) is the basis of most WWW services so, evaluating the performance of HTTP on asymmetric networks is increasingly important, particularly real-world networks. However, the performance of HTTP on the asymmetric networks composed of satellite and terrestrial links has not sufficiently evaluated. This paper proposes new formulas to evaluate the performance of both HTTP1.0 and HTTP1.1 on asymmetric networks. Using these formulas, we calculate the time taken to transfer web data by HTTP1.0/1.1. The calculation results are compared to the results of an existing theoretical formula and experimental results gained from a system that combines a VSAT (Very Small Aperture Terminal) satellite communication system for satellite links (downstream) and the Internet for terrestrial links (upstream). The comparison shows that the proposed formulas yield more accurate results (compared to the measured values) than the existing formula. Furthermore, this paper proposes an evaluation formula for pipelined HTTP1.1, and shows that the values output by the proposed formula agree with those obtained by experiments (on the VSAT system) and simulations.

  • Software Defined Radio Prototype for PHS and IEEE 802.11 Wireless LAN

    Hiroyuki SHIBA  Takashi SHONO  Yushi SHIRATO  Ichihiko TOYODA  Kazuhiro UEHARA  Masahiro UMEHIRA  

     
    PAPER

      Vol:
    E85-B No:12
      Page(s):
    2694-2702

    A software defined radio (SDR) prototype based on a multiprocessor architecture (MPA) is developed. Software for Japanese personal handy phone system (PHS) of a 2G mobile system, and IEEE 802.11 wireless LAN, which has much wider bandwidth than the 2G systems, is successfully implemented. Newly developed flexible-rate pre-/ post-processor (FR-PPP) achieves the flexibility and wideband performance that the platform needs. This paper shows the design of the SDR prototype and evaluates its performance by experiments that include PHS processor load and wireless LAN throughput characteristics and processor load.

  • Theoretical Analysis of Subband Adaptive Array Combining Cyclic Prefix Data Transmission Scheme

    Xuan Nam TRAN  Tetsuki TANIGUCHI  Yoshio KARASAWA  

     
    PAPER

      Vol:
    E85-B No:12
      Page(s):
    2610-2621

    This paper presents the theoretical analysis of subband adaptive array combining cyclic prefix transmission scheme (SBAA-CP) in multipath fading environment. The exact expressions for optimal weights, array outputs and the output signal to interference plus noise ratio (SINR) are derived. The analysis shows that use of the cyclic prefix data transmission scheme can significantly improve the performance of subband adaptive array (SBAA). An example of implementing SBAA-CP as a software antenna is also presented.

  • A Study on the Next Generation HomeRF System

    Jeung-Hwa CHO  Hyoung-Kyu SONG  Young-Hwan YOU  Jin-Woong CHO  

     
    LETTER-Multimedia Systems

      Vol:
    E85-B No:12
      Page(s):
    2971-2975

    Among the wireless personal area networks, much attention has been placed on the HomeRF system due to the simple hardware complexity. In this letter, we propose several techniques for the HomeRF system. First, a DC-offset compensation technique is considered for HomeRF system. In addition, a decision directed channel estimation technique is proposed. The proposed techniques require no additional training sequence and a little additional hardware. And finally, a turbo coding technique is considered as a improved coding scheme. It is shown that the performance of the proposed algorithm is significantly improved in comparison with the conventional HomeRF system.

  • Experimental Evaluation of High Rate Data Transmission Using Turbo/Convolutional Coding in W-CDMA Mobile Communications

    Kenichi HIGUCHI  Takehiro IKEDA  Satoru FUKUMOTO  Mamoru SAWAHASHI  Fumiyuki ADACHI  

     
    PAPER

      Vol:
    E85-B No:12
      Page(s):
    2750-2759

    This paper evaluates the bit error rate (BER) performance of high rate data transmission such as at 64 and 384 kbits/s (kbps) with high quality (average BER is below 10-6) using turbo/convolutional coding associated with Rake time diversity, antenna diversity, and fast transmission power control (TPC) in multipath fading channels for W-CDMA mobile communications. Laboratory experiments using multipath fading simulators elucidate the superiority of turbo coding over convolutional coding when the channel interleaving length is 40 msec. The required average transmission power for the average BER of 10-6 using turbo coding is decreased by approximately 1.1-1.5 dB and 1.5-1.6 dB for 64 and 384 kbps data transmissions, respectively, compared to that using convolutional coding for a two-path Rayleigh fading channel with the fading maximum Doppler frequency of fD = 5-200 Hz. Furthermore, field experimental results elucidate that the required transmission power for the average BER of 10-6 employing turbo coding is decreased by approximately 0.6 dB and 2.0 dB compared to convolutional coding for 64 and 384 kbps data transmissions, respectively, without antenna diversity reception, while that with antenna diversity reception exhibits only an approximate 0.3-0.5 dB decrease. This decrease in improvement with antenna diversity reception indicates that in an actual fading channel in the field experiments, the impact of the error in path search for Rake combining and SIR measurement for fast TPC diminishes the performance improvement of the turbo coding due to a very low received signal power.

  • Heuristic and Exact Algorithms for QoS Routing with Multiple Constraints

    Gang FENG  Kia MAKKI  Niki PISSINOU  Christos DOULIGERIS  

     
    PAPER-Network

      Vol:
    E85-B No:12
      Page(s):
    2838-2850

    The modern network service of finding the optimal path subject to multiple constraints on performance metrics such as delay, jitter, loss probability, etc. gives rise to the multi-constrained optimal-path (MCOP) QoS routing problem, which is NP-complete. In this paper, this problem is solved through both exact and heuristic algorithms. We propose an exact algorithm E_MCOP, which first constructs an aggregate weight and then uses a K-shortest-path algorithm to find the optimal solution. By means of E_MCOP, the performance of the heuristic algorithm H_MCOP proposed by Korkmaz et al. in a recent work is evaluated. H_MCOP only runs Dijkstra's algorithm (with slight modifications) twice, but it can find feasible paths with a success ratio very close to that of the exact algorithm. However, we notice that in certain cases its feasible solution has an unsatisfactorily high average cost deviation from the corresponding optimal solution. For this reason, we propose some modified algorithms based on H_MCOP that can significantly improve the performance by running Dijkstra's algorithm a few more times. The performance of the exact algorithm and heuristics is investigated through computer simulations on networks of various sizes.

  • Convergence and Steady-State Behavior of a Hybrid Decision Feedback Equalizer

    Kyu-Min KANG  Gi-Hong IM  

     
    PAPER-Fundamental Theories

      Vol:
    E85-B No:12
      Page(s):
    2764-2775

    In this paper, we analyze the convergence and steady-state behavior of the least mean-square (LMS) adaptive filtering algorithm for a finite-length phase-splitting hybrid-type decision feedback equalizer (H-DFE). With some approximations, we derive an iterative expression for the excess mean-square error (MSE) of the H-DFE, which is composed of three statistically dependent excess MSEs; that is, the excess MSEs of the feedforward filter (FFF), intersymbol interference predictive feedback filter (ISI-FBF), and noise predictive feedback filter (NP-FBF) taps. Computer simulation and analytical results show that the average eigenvalue of the input signal for the NP-FBF taps of the H-DFE is time-varying, whereas those for the FFF and ISI-FBF taps are fixed. Nevertheless, the H-DFE can be implemented with fixed step sizes that ensure the convergence of the LMS algorithm without performance degradation from the standpoint of convergence speed, as well as steady-state performance for digital subscriber line (xDSL) applications.

  • A High Performance Fault-Tolerant Dual-LAN with the Dual-Path Ethernet Module

    Jihoon PARK  Jongkyu PARK  Ilseok HAN  Hagbae KIM  

     
    PAPER-Network

      Vol:
    E85-B No:12
      Page(s):
    2880-2886

    The network duplicating can achieve significant improvements of the Local Area Network (LAN)'s performance, availability, and security. For LAN duplicating, a Dual-Path Ethernet Module (DPEM) is developed. Since a DPEM is simply located at the front end of any network device as a transparent add-on type independent hardware machine, it does not require sophisticated server reconfiguration. We examine the desirable properties and the characteristics on the Dual-LAN structure. Our evaluation results show that the developed scheme is more efficient than the conventional Single-LAN structures in various aspects.

21961-21980hit(30728hit)