The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Ti(30728hit)

24521-24540hit(30728hit)

  • Inferring Programmers' Intention by the Use of Context Structure Model of Programs

    Haruo KAWASAKI  

     
    PAPER-Artificial Intelligence, Cognitive Science

      Vol:
    E83-D No:4
      Page(s):
    835-844

    We propose a new inferring programmers' intention system COSMO based on a classification of assignment statements. COSMO is a subsystem of our intelligent programming environment for programming education. The programming environment consists of a program understanding system designed for novice programmers and a novice program evaluation support system designed for teachers, both of which use the technique of the program slicing. Usually, the method of program slicing requires selection of slicing criteria. However, automatic selection of effective slicing criteria is difficult. Here we propose a new inferring programmers' intention system COSMO with automatic selection of effective slicing criteria. In our system, the slicing criteria are inferred using the context structure model of programs. Programs are regarded as natural language texts in the model and analyzed using a similar thinking in context structure analyses of natural language texts. The model is based on a classification of assignment statements using dependence analysis of programs. Furthermore, COSMO obtains networks with information on top-down decomposition of problems as a result of inferring programmers' intention. Therefore, COSMO is useful for understanding programs without presupposed knowledge.

  • Generalized Vertex-Colorings of Partial k-Trees

    Xiao ZHOU  Yasuaki KANARI  Takao NISHIZEKI  

     
    PAPER

      Vol:
    E83-A No:4
      Page(s):
    671-678

    Let l be a positive integer, and let G be a graph with nonnegative integer weights on edges. Then a generalized vertex-coloring, called an l-coloring of G, is an assignment of colors to the vertices of G in such a way that any two vertices u and v get different colors if the distance between u and v in G is at most l. In this paper we give an algorithm to find an l-coloring of a given graph G with the minimum number of colors. The algorithm takes polynomial time if G is a partial k-tree and both l and k are bounded integers.

  • A Fast Kinoform Optimization Algorithm Based on Simulated Annealing

    Yen-Wei CHEN  Shinichiro YAMAUCHI  Ning WANG  Zensho NAKAO  

     
    LETTER-Image

      Vol:
    E83-A No:4
      Page(s):
    774-776

    Several methods have be proposed or used to optimize the phase distribution of a kinoform. In this paper, we proposed a fast algorithm for optimization of the kinoform based on simulated annealing to reduce the large computation cost. This method uses a simplified equation to calculate the energy function after perturbation.

  • Cubic GaN Light Emitting Diode Grown by Metalorganic Vapor-Phase Epitaxy

    Hidenao TANAKA  Atsushi NAKADAIRA  

     
    PAPER

      Vol:
    E83-C No:4
      Page(s):
    585-590

    We studied Si and Mg doping characteristics in cubic GaN and fabricated a light emitting diode of cubic GaN on a GaAs substrate by metalorganic vapor-phase epitaxy. The diode structure consisted of undoped and Mg-doped GaN stacking layers deposited on Si-doped GaN and AlGaN layers. The electron-beam-induced-current signal and current injection characteristics of this diode structure were measured. There was a peak at the interface between the Mg-doped and undoped GaN in the electron-beam-induced-current signal. This shows successful growth of the p-n junction. Light emitting operation was achieved by currents injected through the conducting GaAs substrate of this diode at room temperature. We observed electroluminescence below the bandgap energy of cubic GaN with a peak at 2.6 eV.

  • Base-φ Method for Elliptic Curves over OEF

    Tetsutaro KOBAYASHI  

     
    PAPER

      Vol:
    E83-A No:4
      Page(s):
    679-686

    A new elliptic curve scalar multiplication algorithm is proposed. The algorithm offers about twice the throughput of some conventional OEF-base algorithms because it combines the Frobenius map with the table reference method based on base-φ expansion. Furthermore, since this algorithm suits conventional computational units such as 16, 32 and 64 bits, its base field Fpm is expected to enhance elliptic curve operation efficiency more than Fq (q is a prime) or F2n.

  • High Alumina Co-Doped Silica EDFA and Its Gain-Equalization in Long-Haul WDM Transmission System

    Takao NAITO  Naomasa SHIMOJOH  Takafumi TERAHARA  Toshiki TANAKA  Terumi CHIKAMA  Masuo SUYAMA  

     
    PAPER-Fiber-Optic Transmission

      Vol:
    E83-B No:4
      Page(s):
    775-781

    In an optical submarine cable transmission system, small size, low consumption power, and high reliability are required for inline repeaters. The structure of the inline repeater should be a simple single stage. The design of erbium doped fiber (EDF) itself is very important for the inline repeater to achieve broad bandwidth, high output power, and low noise figure. We designed and developed high alumina co-doped erbium doped fiber amplifiers (EDFAs) for long-haul, high-capacity WDM transmission systems. We investigated the trade-off relationship between the gain flatness and the output power to optimize the EDF length. We obtained high performance, including a slightly sloped gain flatness of +0.04 dB/nm at 1550 nm, a superior noise figure of 4.7 dB, and a relatively large output power of +11.5 dBm for an EDF length of 5 m using a 1480-nm pumping laser diode. We applied gain-equalizers (GEQs) using Mach-Zehnder type filters with different FSRs to accurately compensate for the EDFAs ' gain-wavelength characteristics. The main GEQs have free-spectral-ranges (FSRs) of 48-nm, which are about 2 times as long as the wavelength difference between a 1558-nm EDFA gain peak and a 1536-nm EDFA gain valley. Using a circulating loop with the above EDFAs and GEQs, we performed the broad wavelength bandwidth. The achieved signal wavelength bandwidth after 5,958-km transmission was 20 nm. We successfully transmitted 700-Gbit/s (66 10.66-Gbit/s) WDM signals over 2,212 km. The combination of high alumina co-doped silica EDFA and large FSR GEQ is attractive for long-haul, high-capacity WDM transmission systems.

  • Transform Domain Adaptive Filtering Algorithm via Modified Power Estimator

    Dai I. KIM  Philippe De WILDE  

     
    LETTER-Digital Signal Processing

      Vol:
    E83-A No:4
      Page(s):
    764-770

    This letter analyses the convergence behaviour of the transform domain least mean square (TDLMS) adaptive filtering algorithm which is based on a well known interpretation of the variable stepsize algorithm. With this interpretation, the analysis is considerably simplified. The time varying stepsize is implemented by the modified power estimator to redistribute the spread power after transformation. The main contribution of this letter is the statistical performance analysis in terms of mean and mean squared error of the weight error vector and the decorrelation property of the TDLMS is presented by the lower and upper bound of eigenvalue spread ratio. The theoretical analysis results are validated by Monte Carlo simulation.

  • Realizing the Menezes-Okamoto-Vanstone (MOV) Reduction Efficiently for Ordinary Elliptic Curves

    Junji SHIKATA  Yuliang ZHENG  Joe SUZUKI  Hideki IMAI  

     
    PAPER-Information Security

      Vol:
    E83-A No:4
      Page(s):
    756-763

    The problem we consider in this paper is whether the Menezes-Okamoto-Vanstone (MOV) reduction for attacking elliptic curve cryptosystems can be realized for genera elliptic curves. In realizing the MOV reduction, the base field Fq is extended so that the reduction to the discrete logarithm problem in a finite field is possible. Recent results by Balasubramanian and Koblitz suggest that, if l q-1, such a minimum extension degree is the minimum k such that l|qk-1, which is equivalent to the condition under which the Frey-Ruck (FR) reduction can be applied, where l is the order of the group in the elliptic curve discrete logarithm problem. Our point is that the problem of finding an l-torsion point required in evaluating the Weil pairing should be considered as well from an algorithmic point of view. In this paper, we actually propose a method which leads to a solution of the problem. In addition, our contribution allows us to draw the conclusion that the MOV reduction is indeed as powerful as the FR reduction under l q-1 not only from the viewpoint of the minimum extension degrees but also from that of the effectiveness of algorithms.

  • On the Practical Performance of Hyperelliptic Curve Cryptosystems in Software Implementation

    Yasuyuki SAKAI  Kouichi SAKURAI  

     
    PAPER

      Vol:
    E83-A No:4
      Page(s):
    692-703

    We consider the performance of hyperelliptic curve cryptosystems over the fields Fp vs. F2n. We analyze the complexity of the group law of the jacobians JC(Fp) and JC(F2n) and compare their performance taking into consideration the effectiveness of the word size (32-bit or 64-bit) of the applied CPU (Alpha and Pentium) on the arithmetic of the definition field. Our experimental results show that JC(F2n) is faster than JC(Fp) on an Alpha, whereas JC(Fp) is faster than JC(F2n) on a Pentium. Moreover, we investigate the algorithm of the jacobian and the definition-field arithmetic to clarify our results from a practical point of view, with theoretical analysis.

  • Approximating the Maximum Weight of Linear Codes is APX-Complete

    Toshiya ITOH  

     
    PAPER

      Vol:
    E83-A No:4
      Page(s):
    606-613

    The minimum distance of a linear code C is a useful metric property for estimating the error correction upper bound of C and the maximum likelihood decoding of a linear code C is also of practical importance and of theoretical interest. These problems are known to be NP-hard to approximate within any constant relative error to the optimum. As a problem related to the above, we consider the maximization problem MAX-WEIGHT: Given a generator matrix of a linear code C, find a codeword c C with its weight as close to the maximum weight of C as possible. It is shown that MAX-WEIGHT PTAS unless P=NP, however, no nontrivial approximation upper and lower bounds are known. In this paper, we investigate the complexity of MAX-WEIGHT to make the approximation upper and lower bounds more precise, and show that (1) MAX-WEIGHT is APX-complete; (2) MAX-WEIGHT is approximable within relative error 1/2 to the optimum; (3) MAX-WEIGHT is not approximable within relative error 1/10 to the optimum unless P=NP.

  • A 7/3-Approximation for the Minimum Weight 3-Connected Spanning Subgraph Problem

    Hiroshi NAGAMOCHI  Katsuhiro SEKI  Toshihide IBARAKI  

     
    PAPER

      Vol:
    E83-A No:4
      Page(s):
    687-691

    We consider the problem of finding a minimum weight k-connected spanning subgraph of a given edge-weighted graph G for k=3. The problem is known to be NP-hard for k 2, and there are an O(n2m) time 3-approximation algorithm due to Nutov and Penn and an O(n8) time 2-approximation algorithm due to Dinitz and Nutov, where n and m are the numbers of vertices and edges in G, respectively. In this paper, we present a 7/3-approximation algorithm which runs in O(n2m) time.

  • Wavelet-Based Broadband Beamformers with Dynamic Subband Selection

    Yung-Yi WANG  Wen-Hsien FANG  

     
    PAPER-Antenna and Propagation

      Vol:
    E83-B No:4
      Page(s):
    819-826

    In this paper, we present a new approach for the design of partially adaptive broadband beamformers with the generalized sidelobe canceller (GSC) as an underlying structure. The approach designs the blocking matrix involved by utilizing a set of P-regular, M-band wavelet filters, whose vanishing moment property is shown to meet the requirement of a blocking matrix in the GSC structure. Furthermore, basing on the subband decomposition property of these wavelet filters, we introduce a new dynamic subband selection scheme succeeding the blocking matrix. The scheme only retains the principal subband components of the blocking matrix outputs based on a prescribed statistical hypothesis test and thus further reduces the dimension of weights in adaptive processing. As such, the overall computational complexity, which is mainly dictated by the dimension of adaptive weights, is substantially reduced. The furnished simulations show that this new approach offers comparable performance as the existing fully adaptive beamformers but with reduced computations.

  • Continuous Wave Operation of InGaN Laser Diodes Fabricated on SiC Substrates

    Akito KURAMATA  Shin-ichi KUBOTA  Reiko SOEJIMA  Kay DOMEN  Kazuhiko HORINO  Peter HACKE  Toshiyuki TANAHASHI  

     
    INVITED PAPER

      Vol:
    E83-C No:4
      Page(s):
    546-551

    We introduce the characteristics for continuous wave operation at room temperature of InGaN laser diodes fabricated on SiC substrates. The threshold current was 60 mA, the threshold voltage was 8.3 V, and the oscillation wavelength was 404.4 nm. The lifetime of the laser diodes with a constant light output of 1 mW at 25 was 57 hours. The heat dissipation of the devices mounted p-side-up on a stem without using a heat sink was shown to be as good as that of devices mounted p-side-down with an external heat sink, owing to the high thermal conductivity of SiC substrates.

  • Investigations on Strained AlGaN/GaN/Sapphire and GaInN Multi-Quantum-Well Surface LEDs Using AlGaN/GaN Bragg Reflectors

    Hiroyasu ISHIKAWA  Naoyuki NAKADA  Masaharu NAKAJI  Guang-Yuan ZHAO  Takashi EGAWA  Takashi JIMBO  Masayoshi UMENO  

     
    PAPER

      Vol:
    E83-C No:4
      Page(s):
    591-597

    Investigations were carried out on metalorganic-chemical-vapor-deposition (MOCVD)-grown strained AlGaN/ GaN/sapphire structures using X-ray diffratometry. While AlGaN with lower AlN molar fraction (< 0.1) is under the in-plane compressive stress, it is under the in-plane tensile stress with high AlN molar fraction (> 0.1). Though tensile stress caused the cracks in AlGaN layer with high AlN molar fraction, we found that the cracks dramatically reduced when the GaN layer quality was not good. Using this technique, we fabricated a GaInN multi-quantum-well (MQW) surface emitting diodes were fabricated on 15 pairs of AlGaN/GaN distributed Bragg reflector (DBR) structures. The reflectivity of 15 pairs of AlGaN/GaN DBR structure has been shown as 75% at 435 nm. Considerably higher output power (1.5 times) has been observed for DBR based GaInN MQW LED when compared with non-DBR based MQW structures.

  • Progress in GaN-Based Nanostructures for Blue Light Emitting Quantum Dot Lasers and Vertical Cavity Surface Emitting Lasers

    Yasuhiko ARAKAWA  Takao SOMEYA  Koichi TACHIBANA  

     
    INVITED PAPER

      Vol:
    E83-C No:4
      Page(s):
    564-572

    Our recent progress in GaN-based nanostructures for quantum dot (QD) lasers and vertical microcavity surface emitting lasers (VCSELs) is discussed. We have grown InGaN self-assembled QDs on a GaN epitaxial layer, using atmospheric-pressure metalorganic chemical vapor deposition. The average diameter of the QDs was as small as 8.4 nm and strong photoluminescence emission from the QDs was observed at room temperature. Furthermore, we found that InGaN QDs could be formed even after 10 QD layers were stacked, thus increasing the total QD density. Using these growth results, we fabricated a laser structure with InGaN QDs embedded in the active layer. A clear threshold was observed in the dependence of the emission intensity on the excitation energy at room temperature under optical excitation. We succeeded in demonstrating in lasing action in vertical cavity surface emitting lasers at room temperature with a cavity finesse of over 200.

  • Copy-Token Allocation Control for Adaptive Multicast Routing and Its Performance

    Hideki TODE  Hiroki YAMAUCHI  Hiromasa IKEDA  

     
    PAPER-Network

      Vol:
    E83-B No:4
      Page(s):
    803-811

    An efficient scheme for establishing the multicast-path on ATM network is to configure the tree-shaped path via several intermediate copy nodes. This scheme needs the multicast routing control. Thus, restricting the number of copy nodes was proposed since it make this control fast and simple. However, if restricted number of copy nodes is fixed in the network design, multicast traffic will concentrate around copy nodes, and as a result, the possibility of occurring congestion will be higher. In our research, we permit restricted number of nodes as intermediate nodes which branch the tree-shaped path at routing, and name this permission "copy-token. " Namely, the node which has "copy-token" is defined as the copy node. Our research purpose is to distribute the multicast traffic by adaptively allocating "copy-token" to nodes which satisfy the conditions of both the priority for multicasting such as lower offered load and the geographical distribution at the same time. Finally, we evaluate the performance of our proposed routing scheme on the blocking probability through computer simulations.

  • A Mathematical Proof of Physical Optics Equivalent Edge Currents Based upon the Path of Most Rapid Phase Variation

    Suomin CUI  Ken-ichi SAKINA  Makoto ANDO  

     
    LETTER-Electromagnetic Theory

      Vol:
    E83-C No:4
      Page(s):
    659-663

    Mathematical proof for the equivalent edge currents for physical optics (POEECs) is given for plane wave incidence and the observer in far zone; the perfect accuracy of POEECs for plane wave incidence as well as the degradation for the dipole source closer to the scatterer is clearly explained for the first time. POEECs for perfectly conducting plates are extended to those for impedance plates.

  • Fault Behavior and Change in Internal Condition of Mixed-Signal Circuits

    Yukiya MIURA  

     
    LETTER-Fault Tolerance

      Vol:
    E83-D No:4
      Page(s):
    943-945

    The relationship between the change in transistor operation regions and the fault behavior of a mixed-signal circuit having a bridging fault was investigated. We also discussed determination of transistors to be observed for estimating the fault behavior. These results will be useful for modeling faulty behaviors and analyzing and diagnosing faults in mixed-signal circuits.

  • A Study on (1,7) Coded PRML Systems Using a Double Clock Weighted Viterbi Decoding for Optical Disc Recorder

    Satoshi ITOI  

     
    PAPER-Storage Technology

      Vol:
    E83-C No:4
      Page(s):
    652-658

    Bit error rates (BER) for playback of (1,7) code employed in optical disc recording were simulated using an ideal (Gaussian) playback waveform, with playback being performed by PRML (Partial Response Maximum-Likelihood) combining a partial response equalizer and a double clock weighted Viterbi decoder. It was found that best BER occurs for PR(2,3,3,2) +7/10 level Viterbi decoding at a weighted value of w = 0.5 for data consisting of 107 symbols. For a minimum bit length of 0.28 µm, BER of 10-4 and less than 10-6 was obtained for SN ratios of 15.6 dB and 17.7 dB, respectively. And for a minimum bit length of 0.26 µm, BER of 10-4 and less than 10-6 was obtained for SN ratios of 16.7 dB and 18.8 dB, respectively. These results demonstrate the feasibility of a minimum bit length of 0.26 µm in current optical disc recorders.

  • A Jitter Suppression Technique for a Clock Multiplier

    Kiyoshi ISHII  Keiji KISHINE  Haruhiko ICHINO  

     
    PAPER-Integrated Electronics

      Vol:
    E83-C No:4
      Page(s):
    647-651

    This paper describes a jitter suppression technique for a clock multiplier IC that uses a phase-locked loop (PLL). It is shown that the jitter cutoff frequency of the jitter transfer function can be greatly improved by adding a surface acoustic wave (SAW) filter whose center frequency equals the input frequency. The jitter transfer function is mainly determined by the characteristics of the SAW filter. Therefore, the clock multiplier IC can be set at a high loop gain to minimize the jitter generation without increasing the jitter cutoff frequency. The use of a clock multiplier IC that was fabricated with Si bipolar technology and a SAW filter with the center frequency of 155.52 MHz and a quality (Q) factor of 1500 results in a very low jitter generation of 3.5 mUI rms and an extremely low jitter cutoff frequency of about 50 kHz when the clock multiplier converts a clock frequency of 155.52 MHz into a 2.48832-GHz signal.

24521-24540hit(30728hit)