The search functionality is under construction.

Author Search Result

[Author] Takashi JIMBO(10hit)

1-10hit
  • Synthesis of Carbon Nanofibers from Carbon Particles by Ultrasonic Spray Pyrolysis of Ethanol

    Jianhui ZHANG  Ishwor KHATRI  Naoki KISHI  Tetsuo SOGA  Takashi JIMBO  

     
    PAPER-Nanomaterials and Nanostructures

      Vol:
    E92-C No:12
      Page(s):
    1432-1437

    We report the growth of carbon nanofibers (CNFs) from carbon particles by chemical vapor deposition (CVD) with ultrasonic neblizer using ethanol as carbon source. Dense CNFs having diameters of several tens of nanometers have been successfully synthesized by the CVD without using any metal catalysts. The carbon particles formed from decompostion of fullerene were found to be suitable for the synthesis of CNFs. Details of the optimum conditions for producing CNFs and the expected growth mechanism are also described.

  • Room-Temperature CW Operation of AlGaAs/GaAs SQW Lasers Grown on Si by MOCVD

    Takashi EGAWA  Takashi JIMBO  Masayoshi UMENO  

     
    PAPER

      Vol:
    E75-A No:1
      Page(s):
    60-66

    The heterointerfaces of Al0.3Ga0.7As/GaAs single quantum wells (SQWs) and the characteristics of SQW lasers grown on Si substrates with Al0.5Ga0.5As/Al0.55Ga0.45P intermediate layers (AlGaAs/AlGaP ILs) entirely by metalorganic chemical vapor deposition (MOCVD) are reported. The effects of thermal cycle annealing on the crystallinity and the lasing characteristics of GaAs/Si are also reported. By using the AlGaAs/AlGaP ILs, SQWs with a specular surface morphology and a smoother heterointerface can be grown on a Si substrate. Thermal cycle annealing is found to improve the crystallinity of GaAs/Si and to contribute to room-temperature continuous-wave operation of lasers on Si substrates. The combinations of the techniques of AlGaAs/AlGaP ILs and thermal cycle annealing improve the lasing characteristics: an average threshold current density of 1.83 kA/cm2, an average differential quantum efficiency of 52%, an internal quantum efficiency of 83%, an intrinsic mode loss coefficient of 23cm-1, a differential gain coefficient of 1.9cm/A, and a transparency current density of 266 A/cm2, which are superior to those of the two-step-grown laser on a Si substrate. The improvements of the lasing characteristics result from the smooth heterointerfaces of the AlGaAs/AlGaP ILs.

  • Low Noise and Low Distortion Performances of an AlGaN/GaN HFET

    Yutaka HIROSE  Yoshito IKEDA  Motonori ISHII  Tomohiro MURATA  Kaoru INOUE  Tsuyoshi TANAKA  Hiroyasu ISHIKAWA  Takashi EGAWA  Takashi JIMBO  

     
    PAPER

      Vol:
    E86-C No:10
      Page(s):
    2058-2064

    We present ultra low noise- and wide dynamic range performances of an AlGaN/GaN heterostructure FET (HFET). An HFET fabricated on a high quality epitaxial layers grown on a semi-insulating SiC substrate exhibited impressively low minimum noise figure (NF min ) of 0.4 dB with 16 dB associated gain at 2 GHz. The low NF (near NF min ) operation was possible in a wide drain bias voltage range, i.e. from 3 V to 15 V. At the same time, the device showed low distortion character as indicated by the high third order input intercept point (IIP3), +13 dBm. The excellent characteristics are attributed to three major factors: (1) high quality epitaxial layers that realized a high transconductance and very low buffer leakage current; (2) excellent device isolation made by selective thermal oxidation; (3) ultra low gate leakage current realized by Pd based gate. The results demonstrate that the AlGaN/GaN HFET is a strong candidate for front-end LNAs in various mobile communication systems where both the low noise and the wide dynamic range are required.

  • Motion Detecting Artificial Retina Model by Two-Dimensional Multi-Layered Analog Electronic Circuits

    Masashi KAWAGUCHI  Takashi JIMBO  Masayoshi UMENO  

     
    PAPER

      Vol:
    E86-A No:2
      Page(s):
    387-395

    We propose herein a motion detection artificial vision model which uses analog electronic circuits. The proposed model is comprised of four layers. The first layer is a differentiation circuit of the large CR coefficient, and the second layer is a differentiation circuit of the small CR coefficient. Thus, the speed of the movement object is detected. The third layer is a difference circuit for detecting the movement direction, and the fourth layer is a multiple circuit for detecting pure motion output. When the object moves from left to right the model outputs a positive signal, and when the object moves from right to left the model outputs a negative signal. We first designed a one-dimensional model, which we later enhanced to obtain a two-dimensional model. The model was shown to be capable of detecting a movement object in the image. Using analog electronic circuits, the number of connections decrease and real-time processing becomes feasible. In addition, the proposed model offers excellent fault tolerance. Moreover, the proposed model can be used to detect two or more objects, which is advantageous for detection in an environment in which several objects are moving in multiple directions simultaneously. Thus, the proposed model allows practical, cheap movement sensors to be realized for applications such as the measurement of road traffic volume or counting the number of pedestrians in an area. From a technological viewpoint, the proposed model facilitates clarification of the mechanism of the biomedical vision system, which should enable design and simulation by an analog electric circuit for detecting the movement and speed of objects.

  • Room-Temperature CW Operation of AlGaAs/GaAs SQW Lasers Grown on Si by MOCVD

    Takashi EGAWA  Takashi JIMBO  Masayoshi UMENO  

     
    PAPER

      Vol:
    E75-C No:1
      Page(s):
    58-64

    The heterointerfaces of Al0.3Ga0.7As/GaAs single quantum wells (SQWs) and the characteristics of SQW lasers grown on Si substrates with Al0.5Ga0.5As/Al0.55Ga0.45P intermediate layers (AlGaAs/AlGaP ILs) entirely by metalorganic chemical vapor deposition (MOCVD) are reported. The effects of thermal cycle annealing on the crystallinity and the lasing characteristics of GaAs/Si are also reported. By using the AlGaAs/AlGaP ILs, SQWs with a specular surface morphology and a smoother heterointerface can be grown on a Si substrate. Thermal cycle annealing is found to improve the crystallinity of GaAs/Si and to contribute to room-temperature continuous-wave operation of lasers on Si substrates. The combinations of the techniques of AlGaAs/AlGaP ILs and thermal cycle annealing improve the lasing characteristics: an average threshold current density of 1.83 kA/cm2, an average differential quantum efficiency of 52%, an internal quantum efficiency of 83%, an intrinsic mode loss coefficient of 23 cm-1, a differential gain coefficient of 1.9 cm/A, and a transparency current density of 266 A/cm2, which are superior to those of the two-step-grown laser on a Si substrate. The improvements of the lasing characteristics result from the smooth heterointerfaces of the AlGaAs/AlGaP ILs.

  • A Model for Pattern Recognition

    Xiao-yan ZHU  Yasuaki IWASE  Takashi JIMBO  Masayoshi UMENO  

     
    LETTER-Image Processing, Computer Graphics and Pattern Recognition

      Vol:
    E72-E No:8
      Page(s):
    888-890

    A simple model for pattern recognition is proposed, which can be approximated by a multilayer network. An application to handwritten character recognition is simulated and characters were recognized with an accuracy about 90%. Using this model enables the system to be simpler.

  • Growth of 100-mm-Diameter AlGaN/GaN Heterostructures on Sapphire Substrates by MOVPE

    Makoto MIYOSHI  Masahiro SAKAI  Hiroyasu ISHIKAWA  Takashi EGAWA  Takashi JIMBO  Mitsuhiro TANAKA  Osamu ODA  

     
    PAPER

      Vol:
    E86-C No:10
      Page(s):
    2077-2081

    For the mass production of GaN-based electronic devices, growth of AlGaN/GaN heterostructures on substrates larger than 100 mm in diameter is indispensable. In this study, we demonstrate the growth of 100-mm-diameter Al0.26Ga0.74N/GaN heterostructures on sapphire substrates by metalorganic vapor phase epitaxy (MOVPE). The obtained films have specular surfaces, good crystal quality and good uniformity of alloy composition across the entire 100-mm-diameter epitaxial wafer. The bowing value of the 100-mm-diameter epitaxial wafer on c-face sapphire substrates is about 40 µm. This bowing value seems to be preferable for electronic device fabrication processes. These epitaxial wafers show good electrical properties.

  • High-Quality AlGaN/GaN HEMTs on Epitaxial AlN/Sapphire Templates

    Masahiro SAKAI  Kenta ASANO  Subramaniam ARULKUMARAN  Hiroyasu ISHIKAWA  Takashi EGAWA  Takashi JIMBO  Tomohiko SHIBATA  Mitsuhiro TANAKA  Osamu ODA  

     
    PAPER

      Vol:
    E86-C No:10
      Page(s):
    2071-2076

    We have demonstrated AlGaN/GaN high electron mobility transistors (HEMTs) grown on epitaxial AlN/sapphire templates. The crystal qualities and fabricated device performances between AlGaN/GaN HEMTs on epitaxial AlN/sapphire templates and conventional AlGaN/GaN HEMTs on sapphire substrates with low-temperature buffer layer (LT-BLs) are compared with each other. By using epitaxial AlN/sapphire templates instead of LT-BLs, higher mobility was exhibited and superior crystal qualities were observed, as confirmed by X-ray diffraction (XRD), atomic force microscopy (AFM) images and capacitance-voltage measurements. In addition, the dc characteristics of the fabricated devices on epitaxial AlN/sapphire templates were enhanced. AlGaN/GaN HEMTs on epitaxial AlN/sapphire templates are promising candidates for practical applications of nitride-based electronic devices.

  • Investigations on Strained AlGaN/GaN/Sapphire and GaInN Multi-Quantum-Well Surface LEDs Using AlGaN/GaN Bragg Reflectors

    Hiroyasu ISHIKAWA  Naoyuki NAKADA  Masaharu NAKAJI  Guang-Yuan ZHAO  Takashi EGAWA  Takashi JIMBO  Masayoshi UMENO  

     
    PAPER

      Vol:
    E83-C No:4
      Page(s):
    591-597

    Investigations were carried out on metalorganic-chemical-vapor-deposition (MOCVD)-grown strained AlGaN/ GaN/sapphire structures using X-ray diffratometry. While AlGaN with lower AlN molar fraction (< 0.1) is under the in-plane compressive stress, it is under the in-plane tensile stress with high AlN molar fraction (> 0.1). Though tensile stress caused the cracks in AlGaN layer with high AlN molar fraction, we found that the cracks dramatically reduced when the GaN layer quality was not good. Using this technique, we fabricated a GaInN multi-quantum-well (MQW) surface emitting diodes were fabricated on 15 pairs of AlGaN/GaN distributed Bragg reflector (DBR) structures. The reflectivity of 15 pairs of AlGaN/GaN DBR structure has been shown as 75% at 435 nm. Considerably higher output power (1.5 times) has been observed for DBR based GaInN MQW LED when compared with non-DBR based MQW structures.

  • Optoelectronic Integrated Circuits Grown on Si Substrates

    Takashi EGAWA  Takashi JIMBO  Masayoshi UMENO  

     
    INVITED PAPER-Integration of Opto-Electronics and LSI Technologies

      Vol:
    E76-C No:1
      Page(s):
    106-111

    We have demonstrated the successful fabrication of the monolithic integration of a GaAs metalsemiconductor field-effect transistor (MESFET), an AlGaAs/InGaAs laser and a p-n photodetector grown on a SiO2 backcoated p-Si substrate using selective regrowth by metalorganic chemical vapor deposition (MOCVD). The use of SiO2 backcoated Si substrate is effective in suppressing unintentional Si autodoping and obtaining a good pinch-off GaAs MESFET. The MESFET with 2.5400 µm2 gate exhibited a transconductance of 90 mS/mm and a threshold voltage of 2.2 V. The reliability of the laser on the Si substrate can be improved by the strain-relieved AlGaAs/InGaAs laser with the InGaAs intermediate layer. The longest lifetime of the laser is 8 h at 27. During the GaAs layer growth, the p-n photodetector is formed near the surface of the p-Si substrate by diffusing the As atoms.