The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Ti(30728hit)

29121-29140hit(30728hit)

  • High-Density Full-CMOS SRAM Cell Technology with a Deep Sub-Micron Spacing between nMOS and pMOSFET

    Fumitomo MATSUOKA  Kazunari ISHIMARU  Hiroshi GOJOHBORI  Hidetoshi KOIKE  Yukari UNNO  Manabu SAI  Toshiyuki KONDO  Ryuji ICHIKAWA  Masakazu KAKUMU  

     
    PAPER-General Technology

      Vol:
    E77-C No:8
      Page(s):
    1385-1394

    A full CMOS cell technology for high density SRAMs has been developed. A 0.4 µm n+/p+ spacing has been achieved by a shallow trench isolation with a retrograde and a shallow well design. Dual gate 0.35 µm n- and p-channel MOSFETs were used for the high density full CMOS SRAM cell. The side-wall inversion problem to which MOSFETs are subject due to the trench isolation structure has been controlled by combining taper angled trench etching and a rounded trench edge shape. A dual gate 0.4 µm nMOS/pMOS spacing has also been accomplished with no lateral gate dopant diffusion by an enlarged grain size tungsten polycide gate structure. These techniques can resolve the bottleneck problem of full CMOS SRAM cell size reduction, and realize a competitive cell size against conventional polysilicon resistor load SRAM cell (E/R type cell) or thin-film-transistor load SRAM cell (TFT type cell) structures. A test chip of a 256 k bit full CMOS SRAM was fabricated to verify the process integration of the shallow trench isolation with the retrograde shallow well design and the dual gate CMOS structure. It has been recognized that the above techniques are possible solutions for deep sub-micron high density full CMOS SRAM cell structure.

  • Multi-Fiber Linear Lightwave Networks--Design and Implementation Issues--

    Po-Choi WONG  Kin-Hang CHAN  

     
    PAPER-Optical Communication

      Vol:
    E77-B No:8
      Page(s):
    1040-1047

    Linear lightwave networks (LLNs) are optical networks in which network nodes perform only linear operations on optical signals: power splitting, combining, and non-regenerative amplification. While previous efforts on LLNs assume only one fiber per link, we consider a multi-fiber linear lightwave network (M-LLN) architecture for telecommunications where switching exchanges are normally connected by multi-fiber cables. We propose a class of linear path (LP) allocation schemes for establishing optical paths in M-LLNs, and show that they have a better performance than those proposed for single-fiber LLNs. We show that M-LLNs can be implemented with commercially available components, and discuss the implementation issues in detail.

  • Performance Analysis of Multi-Pulse PPM with Imperfect Slot Synchronization in Optical Direct-Detection Channel

    Kazumi SATO  Tomoaki OHTSUKI  Iwao SASASE  Shinsaku MORI  

     
    PAPER-Optical Communication

      Vol:
    E77-B No:8
      Page(s):
    1032-1039

    The performance of multi-pulse pulse position modulation (MPPM) consisting of m slots and 2 pulses, denoted as (m, 2) MPPM, with imperfect slot synchronization is analyzed. The word error probability of (m, 2) MPPM in the presence of timing offset is analyzed, and the optimum symbol sets of (m, 2) MPPM minimizing the symbol error probability are assigned. When an unassigned symbol is detected, the receiver decodes the unassigned symbol as one of the assigned symbols having the highest probability of transition from the assigned symbol to the unassigned symbol. The bit error probability of (m, 2) MPPM in the presence of the timing offset is analyzed, and the bit error probability of (m, 2) MPPM is compared with that of PPM for the same transmission bandwidth and the same transmission rate. Moreover, the bit error probability of (m, 2) MPPM synchronized by a phase-locked loop (PLL) is also analyzed. It is shown that a word with two continuous pulses has better performance than a word with two separate pulses. It is also shown that when the timing offset occurs, and when the slot clock is synchronized by a PLL, (m, 2) MPPM performs better than PPM because (m, 2) MPPM has the optimum assigned symbols, and can decode detected words more correctly than PPM.

  • Throughput Performance of ICMA with Capture

    Kee Chaing CHUA  Dao Xian LIU  Kin Mun LYE  

     
    LETTER-Radio Communication

      Vol:
    E77-B No:8
      Page(s):
    1064-1067

    The throughput performance of a slotted, non-persistent Idle-Signal Casting Multiple Access (ICMA) protocol under the effects of various combinations of Rayleigh fading, lognormal shadowing, and spatial distribution of mobile users is studied. The opposing effects of propagation impairments on the performance of the protocol through simultaneously increasing the probability of receiver capture and attenuation of the received signal power level are demonstrated.

  • Ultrafast Single-Shot Water and Fat Separated Imaging with Magnetic Field Inhomogeneities

    Shoichi KANAYAMA  Shigehide KUHARA  Kozo SATOH  

     
    PAPER-Medical Electronics and Medical Information

      Vol:
    E77-D No:8
      Page(s):
    918-924

    Ultrafast MR imaging (e.g., echo-planar imaging) acquires all the data within only several tens of milliseconds. This method, however, is affected by static magnetic field inhomogeneities and chemical shift; therefore, a high degree of field homogeneity and water and fat signal separation are required. However, it is practically impossible to obtain an homogeneous field within a subject even if in vivo shimming has been performed. In this paper, we describe a new ultrafast MR imaging method called Ultrafast Single-shot water and fat Separated Imaging (USSI) and a correction method for field inhomogeneities and chemical shift. The magnetic field distribution whthin the subject is measured before thd scan and used to obtain images without field inhomogeneity distortions. Computer simulation results have shown that USSI and the correction method can obtain water and fat separated images as real and imaginary parts, respectively, of a complex Fourier transform with a single-shot scan. Image quality is maintained in the presence of field inhomogeneities of several ppm similar to those occurring under practical imaging conditions. Limitations of the correction method are also discussed.

  • Design of Repairable Cellular Arrays on Multiple-Valued Logic

    Naotake KAMIURA  Yutaka HATA  Kazuharu YAMATO  

     
    PAPER-Fault Tolerant Computing

      Vol:
    E77-D No:8
      Page(s):
    877-884

    This paper proposes a repairable and diagnosable k-valued cellular array. We assume a single fault, i.e., either stuck-at-O fault or stuck-at-(k1) fault of switches occurs in the array. By building in a duplicate column iteratively, when a stuck-at-(k1) fault occurs in the array, the fault never influences the output of the array. That is, we can construct a fault-tolerant array for the stuck-at-(k1) fault. While, for the stuck-at-O fault, the diagnosing method is simple and easy because we don't have to diagnose the stuck-at-(k1) fault. Moreover, our array can be repaired easily for the fault. The comparison with other rectangular arrays shows that our array has advantages for the number of cells and the cost of the fault diagnosis.

  • Automatic Seal Imprint Verification System with Imprint Quality Assessment Function and Its Performance Evaluation

    Katsuhiko UEDA  

     
    PAPER-Image Processing, Computer Graphics and Pattern Recognition

      Vol:
    E77-D No:8
      Page(s):
    885-894

    An annoying problem encountered in automatic seal imprint verification is that for seal imprints may have a lot of variations, even if they are all produced from a single seal. This paper proposes a new automatic seal imprint verification system which adds an imprint quality assessment function to our previous system in order to solve this problem, and also examines the verification performance of this system experimentally. This system consists of an imprint quality assessment process and a verification process. In the imprint quality assessment process, an examined imprint is first divided into partial regions. Each partial region is classified into one of three quality classes (good quality region, poor quality region, and background) on the basis of characteristics of its gray level histogram. In the verification process, only good quality partial regions of an examined imprint are verified with registered one. Finally, the examined imprint is classified as one of two types: a genuine and a forgery. However, as a result of quality assessment, if the partial regions classified as poor quality are too many, the examined imprint is classified as ambiguous" without verification processing. A major advantage of this verification system is that this system can verify seal imprints of various qualities efficiently and accurately. Computer experiments with real seal imprints were performed by using this system, previous system (without image quality assessment function) and document examiners of a bank. The results of these experiments show that this system is superior in the verification performance to our previous system, and has a similar verification performance to that of document examiners (i.e., the experimental results show the effectiveness of adding the image quality assessment function to a seal imprint verification system).

  • On Specifying Protocols Based on LOTOS and Temporal Logic

    Toshihiko ANDO  Yasushi KATO  Kaoru TAKAHASHI  

     
    PAPER-Signaling System and Communication Protocol

      Vol:
    E77-B No:8
      Page(s):
    992-1006

    We propose a method which can construct LOTOS specifications of communication systems from temporal properties described in Extended branching time temporal logic (EBTL) in this paper. Description of LOTOS, one of Formal Description Techniques, is based on behaviors of systems so that LOTOS permits strict expression. However, it is difficult to express temporal properties explicitly. On the other hand, Temporal logic is based on properties of systems. Thus temporal logic permits direct expression of temporal properties which can be understood intuitively. Accordingly, temporal logic is more useful than FDTs on the first step of systems specification. This method is effective in this point of view. Specifications obtained using this method can have a structured style. When temporal properties are regarded as constraints about temporal order among actions of systems, those specification can have a constraint oriented style. This method is based on sequential composition of Labelled Transition Systems (LTSs) which are semantics of LOTOS. EBTL is also defined on LTSs. In general, many LTSs satisfy the same temporal property. To obtain such the minimal LTS, the standard form of LTSs corresponding to EBTL operators are defined. Those standard LTSs are mainly tailored to the field of communication protocol. We also show conditions that original temporal properties are preserved in case of sequential composition of standard LTSs. In addition, applying this method to the Abracadabra Protocol, we show that this method can construct specifications of concrete protocols effectively.

  • A Resistor Coupled Josephson Polarity-Convertible Driver

    Shuichi NAGASAWA  Shuichi TAHARA  Hideaki NUMATA  Yoshihito HASHIMOTO  Sanae TSUCHIDA  

     
    PAPER-LTS

      Vol:
    E77-C No:8
      Page(s):
    1176-1180

    A polarity-convertible driver is necessary as a basic component of several Josephson random access memories. This driver must be able to inject a current having positive or negative polarity into a load transmission line such as a word or bit line of the RAM. In this paper, we propose a resistor coupled Josephson polarity-convertible driver which is highly sensitive to input signals and has a wide operating margin. The driver consists of several Josephson junctions and several resistors. The input signal is directly injected to the driver through the resistors. The circuit design is discussed on the operating principle of the driver. The driver is fabricated by 1.5 µm Nb technology with Nb/AlOx/Nb Josephson junctions, two layer Nb wirings, an Nb ground plane, Mo resistors, and SiO2 insulators. The Nb/AlOx/Nb Josephson junctions are fabricated using technology refined for sub-micron size junctions. The insulators between wirings are formed using bias sputtering technique to obtain good step coverage. The driver circuit size is 53 µm34 µm. Measurements are carried out at 10 kHz to quasistatically test the polarity-convertible function and the operating margin of the driver. Proper polarity-convertible operation is confirmed for a large operating bias margin of 70% at a fairly small input current of 0.3 mA.

  • Performance of a Modified Symbol-Rate-Increased TC-2mQAM

    Hirokazu TANAKA  Tomoto K. MATSUSHIMA  

     
    LETTER

      Vol:
    E77-A No:8
      Page(s):
    1378-1380

    In this paper, trellis coded modulation with bandwidth expansion is examined. The proposed scheme is a modified Symbol-rate-increased TCM [3]-[5], which allows the bandwidth expansion ratio to be varied to an arbitrary value. The Symbol-rate-increased TCM has been shown to be a particular case of the proposed scheme. Simulation results have clarified that the proposed scheme achieves a significant improvement over an uncoded scheme in an AWGN channel.

  • Performance Evaluation Method of Trellis Coded Modulation Scheme without Uniformity

    Haruo OGIWARA  Kazuo OOHIRA  

     
    PAPER

      Vol:
    E77-A No:8
      Page(s):
    1267-1273

    An encoder of a trellis coded modulation (TCM) is composed of a linear convolutional encoder followed by a mapper to channel signals. A new condition, under which the performance evaluation of the TCM is possible based on the 2ν state error state transition diagram, is proposed, where ν is the number of delay elements in the convolutional encoder. There have been proposed three similar methods. This paper points out the restriction of the previous methods, and proposes a new method. The condition, under which the previous method is useful, is called nuiformity, such as, the error weight profile is independent from the encoder state. When uniformity does not hold, we discuss to divide an error state into substates based on the coset decomposition of output vectors of the convolutional encoder. The coset is determined by the vector called coset selector. If the condition defined as equal dividing holds, the subdivided states can be merged and the performance can be evaluated based on the 2ν state transition diagram, even for the codes without uniformity. When the row rank of the transformation matrix, from the input vector of the encoder to the coset selector vector, is full, the equal dividing condition holds under the assumption of equally probable i.i.d. (independently identically distributed) input sequence. For TCM schemes without uniformity (in the case, previous methods can not be applied), upper bounds of the bit error rate are evaluated by the proposed method and compared with the simulation results. The difference is less than 10% in the range of bet error rate 10-4.

  • Distortion-Complexity and Rate-Distortion Function

    Jun MURAMATSU  Fumio KANAYA  

     
    PAPER

      Vol:
    E77-A No:8
      Page(s):
    1224-1229

    We define the complexity and the distortion-complexity of an individual finite length string from a finite set. Assuming that the string is produced by a stationary ergodic source, we prove that the distortion-complexity per source letter and its expectation approximate arbitrarily close the rate-distortion function of this source as the length of the string grows. Furthermore, we apply this property to construct a universal data compression scheme with distortion.

  • Performance Analysis of Road Traffic Data Collection System

    Jean-Paul M. G. LINNARTZ  Marcel WESTERMAN  

     
    PAPER

      Vol:
    E77-B No:7
      Page(s):
    934-938

    Advanced Traveller Information Systems (ATIS) and Advanced Traffic Management Systems (ATMS) require real-time traffic data to observe and control the trafic flow. Still, there is a lack of proficient traffic monitoring systems. One method to collect such data is using particular equipped vehicles, called probes, transmitting experienced travel times to base stations which in turn are connected to a traffic control center. In this paper we analyse the performance of a radio network for collecting real-time traffic data from probes. The results reveal that random transmission of traffic reports is a (spectrum) efficient, inexpensive and flexible method for collecting road traffic data that can provide reliable traffic monitoring.

  • Performance Evaluation of a Processing Element for an On-Chip Multiprocessor

    Masafumi TAKAHASHI  Hiroshige FUJII  Emi KANEKO  Takeshi YOSHIDA  Toshinori SATO  Hiroyuki TAKANO  Haruyuki TAGO  Seigo SUZUKI  Nobuyuki GOTO  

     
    PAPER

      Vol:
    E77-C No:7
      Page(s):
    1092-1100

    A 250-MIPS, 125-MFLOPS peak performance processing element (PE), which is being developed for an on-chip multiprocessor, has been modeled and evaluated. The PE includes the following new architecture components: an FPU shared by several IUs in order to increase the efficiency of the FPU pipelines, an on-chip data cache with a prefetch mechanism to reduce clock cycles waiting for memory, and an interface to high speed DRAM, such as Rambus DRAM and Synchronous DRAM. As a result, a PE model with an FPU shared by four or eight IUs causes only 10% performance reduction compared to a model with an un-shared FPU model while saving the cost of three FPUs. Furthermore, a PE model with prefetch operates 1.2 to 1.8 times faster than a model without prefetch at 250-MHz clock rate when the Rambus DRAM is connected. It becomes clear that this PE architecture can bring a high effective performance at over 250-MHz, and is cost-effective for the on-chip multiprocessor.

  • A Group Demodulator Employing Multi-Symbol Chirp Fourier Transform

    Kiyoshi KOBAYASHI  Tomoaki KUMAGAI  Shuzo KATO  

     
    PAPER

      Vol:
    E77-B No:7
      Page(s):
    905-910

    This paper proposes a group demodulator that employs multi-symbol chirp Fourier transform to demodulate pulse shaped and time asynchronous signals without degradation; this is not possible with conventional group demodulators based on chirp Fourier transform. Computer simulation results show that the bit error rate degradation of the proposed group demodulator at BER=10-3 is less than 0.3dB even when a root Nyquist (α=0.5) filter is used as the transmission pulse shaping filter and the symbol timing offset between the desired channel and the chirp sweep is half the symbol period.

  • A Proposal of a Mobile Radio Channel Database and Its Application to a Simple Channel Simulator

    Tsutomu TAKEUCHI  

     
    LETTER

      Vol:
    E77-B No:7
      Page(s):
    978-980

    Stored channel simulation for mobile radio channel can be the common base of the development of future world wide personal radio communication systems, especially for high bit-rate digital system. This paper proposes a mobile radio channel database which is suitable for the laboratory channel simulation using a simple stored channel simulator, also proposed by the author. The database enables the establishment of a mobile radio channel database containing worldwide channel data in a few discs of compact disc.

  • A New Structure of Antenna System in a Handset Enhancing Antenna Gain by Passive Loading--The Case for λ/4 Monopole Antenna--

    Masanobu HIROSE  Masayasu MIYAKE  

     
    PAPER

      Vol:
    E77-B No:7
      Page(s):
    956-961

    We propose a new structure of antenna system to enhance the horizontal plane gain and control the antenna pattern, using passive loading. Our proposed structure can be applied to various kinds of antennas on a handset. We discuss the case of a λ/4 monopole antenna on a handset in this paper. In a new structure of λ/4 monopole antenna system, we show that, 1) the increase of the average gain about 5dB in the horizontal plane can be realized by an optimum load, 2) the antenna pattern can be controlled by changing the value of the passive load so as to have some desirable shapes, and 3) the antenna size can be made smaller by about 6% than the one with no loading because the optimum loading makes the resonant frequency lower. These results were confirmed by the calculations using the method of moments for the EFIE and the measurements.

  • A New Fully-Digitalized π/4-Shift QPSK Modulator for Personal Communication Terminals

    Tetsu SAKATA  Kazuhiko SEKI  Shuji KUBOTA  Shuzo KATO  

     
    PAPER

      Vol:
    E77-B No:7
      Page(s):
    921-926

    This paper proposes a new fully-digitalized π/4-shift QPSK modulator consisting of a digital pulse shaping filter and a baseband quadrature modulator. By employing a novel digital filter configuration, the required filter memory is reduced to just 6.25% of the conventional one. Moreover, since the proposed baseband modulation scheme does not employ analog mixers or an analog 90 divider, a very accurate, high-stable and compact modulator is realized. It is shown that the proposed scheme achieves excellent low power consumption characteristics and is more suitable for digital LSIC implementation of personal communication terminals than a direct RF modulation scheme and an analog IF modulation scheme.

  • A Signal Information Processing for the Stochastic Response Prediction of Double-Wall Type Sound

    Mitsuo OHTA  Shigeharu MIYATA  

     
    LETTER-Acoustics

      Vol:
    E77-A No:7
      Page(s):
    1194-1198

    In direct connection with the signal information processing, a practical method of identification and probabilistic prediction for sound insulation systems is theoretically proposed in the object-oriented expression forms by introducing a few functional system parameters. Concretely, a trial of identification of the above functional system parameters and the output probabilistic prediction for a panel thickness change of double-wall type sound insulation system, especially, under the existence of a strong background noise inside of the reception room, is newly proposed based on one of wide sense digital filters and SEA (Statistical Energy Analysis) method. Finally, by using the actual music sound of an arbitrary distribution type, the effectiveness of the proposad method is confirmed experimentally by applying it to some problems of predicting the cumulative probability distribution of the transmitted sound level fluctuation.

  • 200-kHz Wide-Band Underwater Ultrasonic Transducers for Color Video Picture Transmission

    Takeshi INOUE  Noriko WATARI  Akira KAMEYAMA  Michiya SUZUKI  Tetsuo MIYAMA  

     
    PAPER-Ultrasonics

      Vol:
    E77-A No:7
      Page(s):
    1185-1193

    Wide-band, low-ripple underwater transducers with high-power acoustic radiation capability have been designed on the basis of multiple-mode filter synthesis theory. They are composed of triple acoustic matching plates and double backing plates with optimized specific acoustic impedances,besides piezoelectric ceramic elements. One of the backing plates employs a Fe damping-alloy to suppress unwanted response peaks in the frequency range above the passband region. Two 33 array transducers were fabricated, each with a center frequency of 200 kHz, one as a transmitter and the other as a receiver. The two transducers show high-sensitivity, low-ripple and wide-band transmitting and receiving responses. Then, the transducers were applied in a color video picture digital transmission system.Clear color video pictures, composed of 256240 pixels, were successfully received within one second.

29121-29140hit(30728hit)