The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Ti(30728hit)

29321-29340hit(30728hit)

  • An Analysis of and a Method of Enhancing the Intensity of OBIRCH Signal for Defects Observation in VLSI Metal Interconnections

    Naoki KAWAMURA  Tomoaki SAKAI  Masakazu SHIMAYA  

     
    PAPER

      Vol:
    E77-C No:4
      Page(s):
    579-584

    The origin of and a method of enhancing the Optical Beam Induced Resistance Change (OBIRCH) signal for defect observation in VLSI metal interconnections is discussed based on a numerical analysis of three-dimensional thermal conduction and experimental results. The numerical analysis shows that the OBIRCH signal originates from a slight increase in the resistance of the metal line caused by laser beam heating and that its effect is influenced by the temperature of the metal layer. Both simulations and experimental results suggest that cooling the sample is preferable to detect the OBIRCH signal. The decrease in the total resistance of the metal line without any change in the amount of the resistance increase under laser illumination is found to be the main cause of the OBIRCH signal enhancement under low temperature measurement.

  • Microstructure Analysis Technique of Specific Area by Transmission Electron Microscopy

    Yoshifumi HATA  Ryuji ETOH  Hiroshi YAMASHITA  Shinji FUJII  Yoshikazu HARADA  

     
    PAPER

      Vol:
    E77-C No:4
      Page(s):
    590-594

    A procedure for preparing a cross-sectional transmission electron microscopy (TEM) micrograph of a specific area is outlined. A specific area in a specimen has been very difficult to observe with TEM, because a particular small area cannot be preselected in the conventional specimen preparation technique using mechanical polishing, dimpling and ion milling. The technique in this paper uses a focused ion beam (FIB) to fabricate a cross-sectional specimen at a desired area. The applications of this specimen preparation technique are illustrated for investigations of particles in the process of fabricating devices and degraded aluminum/aluminum vias. The specimen preparation technique using FIB is useful for observing a specific area. This technique is also useful for shortening the time of specimen preparation and observing wide areas of LSI devices.

  • 4-2 Compressor with Complementary Pass-Transistor Logic

    Youji KANIE  Yasushi KUBOTA  Shinji TOYOYAMA  Yasuaki IWASE  Shuhei TSUCHIMOTO  

     
    LETTER-Electronic Circuits

      Vol:
    E77-C No:4
      Page(s):
    647-649

    This report describes 4-2 compressors composed of Complementary Pass-Transistor Logic (CPL). We will show that circuit designs of the 4-2 compressors can be optimized for high speed and small size using only exclusive-OR's and multiplexers. According to a circuit simulation with 0.8µm CMOS device parameters, the maximum propagation delay and the average power consumption per unit adder are 1.32 ns and 11.6 pJ, respectively.

  • Extraction of Feature Attentive Regions in a Learnt Neural Network

    Hideki SANO  Atsuhiro NADA  Yuji IWAHORI  Naohiro ISHII  

     
    PAPER-Image Processing

      Vol:
    E77-D No:4
      Page(s):
    482-489

    This paper proposes a new method of extracting feature attentive regions in a learnt multi-layer neural network. We difine a function which calculates the degree of dependence of an output unit on an inpur unit. The value of this function can be used to investigate whether a learnt network detects the feature regions in the training patterns. Three computer simulations are presented: (1) investigation of the basic characteristic of this function; (2) application of our method to a simpie pattern classification task; (3) application of our method to a large scale pattern classfication task.

  • Binary Neural Network with Negative Self-Feedback and Its Application to N-Queens Problem

    Masaya OHTA  Akio OGIHARA  Kunio FUKUNAGA  

     
    PAPER-Network Synthesis

      Vol:
    E77-D No:4
      Page(s):
    459-465

    This article deals with the binary neural network with negative self-feedback connections as a method for solving combinational optimization problems. Although the binary neural network has a high convergence speed, it hardly searches out the optimum solution, because the neuron is selected randomly at each state update. In thie article, an improvement using the negative self-feedback is proposed. First it is shown that the negative self-feedback can make some local minimums be unstable. Second a selection rule is proposed and its property is analyzed in detail. In the binary neural network with negative self-feedback, this selection rule is effective to escape a local minimum. In order to comfirm the effectiveness of this selection rule, some computer simulations are carried out for the N-Queens problem. For N=256, the network is not caught in any local minimum and provides the optimum solution within 2654 steps (about 10 minutes).

  • Auditory Pulse Neural Network Model to Extract the Inter-Aural Time and Level Difference for Sound Localization

    Susumu KUROYANAGI  Akira IWATA  

     
    PAPER-Audition

      Vol:
    E77-D No:4
      Page(s):
    466-474

    A novel pulse neural network model for sound localization has been proposed. Our model is based on the physiological auditory nervous system. Human beings can perceive the sound direction using inter-aural time difference (ILD) and inter-aural level difference (ILD) of two sounds. The model extracts these features using only pulse train information. The model is divided roughly into three sections: preprocessing for input signals; transforming continuous signals to pulse trains; and extracting features. The last section consists of two parts: ITD extractor and ILD extractor. Both extractors are implemented using a pulse neuron model. They have the same network structure, differing only in terms of parameters and arrangements of the pulse neuron model. The pulse neuron model receives pulse trains and outputs a pulse train. Because the pulses have only simple informations, their data structures are very simple and clear. Thus, a strict design is not required for the implementation of the model. These advantages are profitable for realizing this model by hardware. A computer simulation has demonstrated that time and level differences between two signals have been successfully extracted by the model.

  • Analysis of the Circuit for Dead Angle Compensation in the DC-to-DC Converter Controlled by a Magnetic Amplifier

    Kazurou HARADA  Koosuke HARADA  

     
    PAPER-Power Supply

      Vol:
    E77-B No:4
      Page(s):
    494-500

    An analysis of the circuit for dead angle compensation in the dc-to-dc converter controlled by a magnetic amplifier is presented. This circuit suppresses the dead angle so that the core loss may be reduced without spoiling the current surge suppression characteristics of the magnetic amplifier. The analysis is given by modeling the magnetization characteristics of the core containing the saturation inductance and the reverse recovery of the diode. As a result, the control characteristics of the converter with the compensation circuit are expressed analytically and a limit of compensation is derived theoretically.

  • Designing Efficient Geometric Search Algorithms Using Persistent Binary-Binary Search Trees

    Xuehou TAN  Tomio HIRATA  Yasuyoshi INAGAKI  

     
    PAPER

      Vol:
    E77-A No:4
      Page(s):
    601-607

    Persistent data structures, introduced by Sarnak and Tarjan, have been found especially useful in designing geometric algorithms. In this paper, we present a persistent form of binary-binary search tree, and then apply this data structure to solve various geometric searching problems, such as, three dimensional ray-shooting, hidden surface removal, polygonal point enclosure searching and so on. In all applications, we are able to either improve existing bounds or establish new bounds.

  • Failure Analysis in Si Device Chips

    Kiyoshi NIKAWA  

     
    INVITED PAPER

      Vol:
    E77-C No:4
      Page(s):
    528-534

    Recent developments and case studies regarding VLSI device chip failure analysis are reviewed. The key failure analysis techniques reviewed include EMMS (emission microscopy), OBIC (optical beam induced current), LCM (liquid crystal method), EBP (electron beam probing), and FIB (focused ion beam method). Further, future possibilities in failure analysis, and some promising new tools are introduced.

  • Cone/Block Methods for Logic Simulation Time Reduction in E-Beam Guided-Probe Diagnosis

    Norio KUJI  Kazuhiro SHIRAKAWA  

     
    PAPER

      Vol:
    E77-C No:4
      Page(s):
    560-566

    Cone and Block methods that sharply reduce logic simulation time in E-beam guided-probe diagnosis are proposed. These methods are based on a primitive-cell-level tracing algorithm, which traces faulty-state cells one by one in the primitive-cell level. By executing logic simulations in these methods so that simulated responses are reported only for the small set of nodes in a tracing path and in the immediate vicinity, simulation CPU time is sharply reduced with state-of-the-art logic simulators such as the Verilog-XL. With the proposed methods, the total CPU time in a diagnostic process can be reduced to 1/700 that of a conventional method. Additionally, the total amount of simulation date also reduces to 1/40 of its original amount. These methods were applied to the guided-probe diagnosis of actual 110k-gate ASIC chips and it was verified that they could be diagnosed in under seven hours per device, which is practical. This technology will greatly contribute to shortening the turnaround time of ASIC development.

  • E-Beam Static Fault Imaging with a CAD Interface and Its Application to Marginal Fault Diagnosis

    Norio KUJI  Kiyoshi MATSUMOTO  

     
    PAPER

      Vol:
    E77-C No:4
      Page(s):
    552-559

    A new image-based diagnostic method is proposed for use with an E-beam tester. The method features a static fault imaging technique and a navigation map for fault tracing. Static Fault imaging with a dc E-beam enables the fast acquisition of images without any additional hardware. Then, guided by the navigation map derived from CAD data, marginal timing faults can be easily pinpointed. A statistical estimation of the average count of static fault images for various LSI circuits shows that the proposed method can diagnose marginal faults by observing less than thirty faulty images and that a faulty area can be localized with up to five times fewer observations than with the guided-probe method. The proposed method was applied to a 19k-gate CMOS-logic LSI circuit and a marginal timing fault was successfully located.

  • Hierarchical Properties of Realtime One-Way Alternating Multi-Stack-Counter Automata

    Tsunehiro YOSHINAGA  Katsushi INOUE  Itsuo TAKANAMI  

     
    PAPER

      Vol:
    E77-A No:4
      Page(s):
    621-629

    This paper investigates the accepting powers of one-way alternating multi-stack-counter automata (lamsca's) and one-way alternating multi-counter automata (lamsca's) which operate in realtime. For each k1, let 1ASCA (k, real) (1ACA(k, real)) denote the class of sets accepted by realtime one-way alternating k-stach-counter (k-counter) automata, and let 1USCA(k, real)(1UCA(k, real)) denote the class of sets accepted by realtime one-way alternating k-stack-counter (k-counter) automata with only universal states. We first investigate a relationship between the accepting powers of realtime lamsca's (lamca's) with only universal states, with only existential states, and with full alternation. We then investigate hierarchical properties based on the numbers of counters and stackcounters, and show, for example, that for each k1, 1USCA(k+1, real)-1ASCA(k, real)φ and 1UCA(k+1, real)-1ACA(k, real)φ. We finally investigate a relationship between the accepting powers of realtime lamsca's and lamca's, and show, for example, that there are no i and j such that 1UCA(i, real)=1USCA(j, real), and 1USCA(k, real)-1ACA(k, real)φ for each k1.

  • On the Complexity of Protocol Validation Problems for Protocols with Bounded Capacity Channels

    Yoshiaki KAKUDA  Yoshihiro TAKADA  Tohru KIKUNO  

     
    PAPER

      Vol:
    E77-A No:4
      Page(s):
    658-667

    In this paper, it is proven that the following three decision problems on validation of protocols with bounded capacity channels are NP-complete. (1) Given a protocol with the channel capacity being 1, determine whether or not there exist deadlocks in the protocol. (2) Given a protocol with the channel capacity being 1, determine whether or not there exist unspecified receptions in the protocol. (3) Given a protocol with the channel capacity being 2, determine whether or not there exist overflows such that the channel capacity is not bounded by 1 in the protocol. These results suggest that, even when all channeles in a protocol are bounded by 1 or 2, protocol validation should be in general interactable. It also clarifies the boundary of computational complexity of protocol validation problems because the channel capacity 0 does not allow protocols to transmit and recieve messages.

  • A Robot Navigation Strategy in Unknown Environment and Its Efficiency

    Aohan MEI  Yoshihide IGARASHI  

     
    PAPER

      Vol:
    E77-A No:4
      Page(s):
    646-651

    We consider a class of unknown scenes Sk(n) with rectangular obstacles aligned with the axes such that Euclidean distance between the start point and the target is n, and any side length of each obstacle is at most k. We propose a strategy called the adaptive-bias heuristic for navigating a robot in such a scene, and analyze its efficiency. We show that a ratio of the total distance walked by a robot using the strategy to the shortest path distance between the start point and the target is at most 1+(3/5) k, if k=o(n) and if the start point and the target are at the same horizontal level. This ratio is better than a ratio obtained by any strategy previously known in the class of scenes, Sk(n), such that k=o(n).

  • Shared Pseudo-Random Secret Generation Protocols

    Manuel CERECEDO  Tsutomu MATSUMOTO  Hideki IMAI  

     
    PAPER

      Vol:
    E77-A No:4
      Page(s):
    636-645

    An extension of the notion of cryptographically strong pseudo-random generator to a distributed setting is proposed in this paper. Instead of a deterministic function to generate a pseudo-random bit string from a truly random shorter string, we have a deterministic secure protocol for a group of separate entities to compute a secretly shared pseudo-random string from a secretly shared and truly random shorter string. We propose a precise definition of this notion in terms of Yao's computational entropy and describe a concrete construction using Shamir's pseudo-random number generator. Several practical applications are also discussed.

  • Peformance Formulation and Evaluation of Associative Memory Extended to Higher Order

    Yukio KUMAGAI  Joarder KAMRUZZAMAN  Hiromitsu HIKITA  

     
    LETTER-Neural Networks

      Vol:
    E77-A No:4
      Page(s):
    736-741

    In this letter, we present a distinct alternative of cross talk formulation of associative memory based on the outer product algorithm extended to the higher order and a performance evaluation in terms of the probability of exact data recall by using this formulation. The significant feature of these formulations is that both cross talk and the probability formulated are explicitly represented as the functional forms of Hamming distance between the memorized keys and the applied input key, and the degree of higher order correlation. Simulation results show that exact data retrieval ability of the associative memory using randomly generated data and keys is in well agreement with our theoretical estimation.

  • Multihead Finite Automata with Markers

    Yue WANG  Katsushi INOUE  Itsuo TAKANAMI  

     
    PAPER

      Vol:
    E77-A No:4
      Page(s):
    615-620

    This paper introduces a new class of machines called multihead marker finite automata, and investigates how the number of markers affects its accepting power. Let HM{0}(i, j)(NHM{0}(i, j))denote the class of languages over a one-letter alphabet accepted by two-way deterministic (nondeterminstic) i-head finite automata with j markers. We show that HM{0} (i, j) HM{0}(i, j1) and NHM{0}(i, j) NHM{0}(i, j+1) for each i2, j0.

  • On Secure and Fast Elliptic Curve Cryptosystems over Fp

    Atsuko MIYAJI  

     
    PAPER

      Vol:
    E77-A No:4
      Page(s):
    630-635

    From a practical point of view, a cryptosystem should require a small key size and less running time. For this purpose, we often select its definition field in such a way that the arithmetic can be implemented fast. But it often brings attacks which depend on the definition field. In this paper, we investigate the definition field Fp on which elliptic curve cryptosystems can be implemented fast, while maintaining the security. The expected running time on a general construction of many elliptic curves with a given number of rational points is also discussed.

  • Practical Efficiencies of Planar Point Location Algorithms

    Satoshi KAGAMI  Masato EDAHIRO  Takao ASANO  

     
    PAPER

      Vol:
    E77-A No:4
      Page(s):
    608-614

    The planar point location problem is one of the most fundamental problems in computational geometry and stated as follows: Given a straight line planar graph (subdivision) with n vertices and an arbitary query point Q, determine the region containing Q. Many algorithms have been proposed, and some of them are known to be theoretically optimal (O(log n) search time, O(n) space and O(n log n) preprocessing time). In this paper, we implement several representative algorithms in C, and investigate their practical efficiencies by computational experiments on Voronoi diagrams with 210 - 217 vertices.

  • An Analysis of the Economics of the VLSI Development Including Test Cost

    Koji NAKAMAE  Homare SAKAMOTO  Hiromu FUJIOKA  

     
    PAPER-Computer Aided Design (CAD)

      Vol:
    E77-A No:4
      Page(s):
    698-705

    In order to evaluate the effect of testing technologies such as electron beam (EB) testing and focused ion beam (FIB) reconstruction on the VLSI development cycle, the VLSI development period and cost are analyzed by using detailed fault models which make possible to take into consideration the effect of EB and FIB techniques. First, the specifications of fabricated VLSIs and the VLSI development cycle are modeled. Next the faults which can be diagnosed by such testing techniques are modeled. By using the parametric model of the VLSI development cycle, the development period and cost are analyzed. In the fault diagnosis stage, the use of an EB tester or the combinational use of an EB tester and an FIB equipment, instead of a traditional mechanical prober is considered. It is seen that the development period and cost are reduced by using EB and FIB diagnosis equipments by a factor of about 3. The effect of scan path method is also evaluated by making use of the same simulation method. Results show that the scan path design is effective for the reduction in both period and cost in the development cycle.

29321-29340hit(30728hit)